Labor Demand Dynamics in Costa Rica

Alonso Alfaro Ureña
Santiago Campos Rodríguez
Valerie Lankester Campos
Dinámica del Mercado Laboral en Costa Rica

Alonso Alfaro Ureña†, Santiago Campos Rodríguez‡, Valerie Lankester Campos§

Resumen

El presente documento estudia los determinantes de la demanda laboral de la economía costarricense, para lo cual se utilizan datos a nivel de firma. Además, describe el empleo formal mediante un set de hechos estilizados. Los resultados sugieren que: (i) la teoría neoclásica del empleo se cumple, (ii) los salarios son un determinante más fuerte de la demanda laboral en la industrias manufactureras y de construcción, (iii) el nivel de empleo es más persistente en las firmas grandes, (iv) las firmas más grandes y tecnológicas ajustan en mayor medida su planilla ante cambios en salarios e ingresos y (v) la demanda laboral costarricense es más sensible a cambios en los salarios pero menos a cambios en la producción que la de economías similares.

Palabras clave: Demanda laboral, elasticidad empleo-producto, elasticidad empleo-salario, creación de empleo.

Clasificación JEL: C23, J21, J23

† Departamento de Investigación Económica. División Económica, BCCR. alfaroua@bccr.fi.cr
‡ Departamento de Investigación Económica. División Económica, BCCR. camposrs@bccr.fi.cr
§ Departamento de Investigación Económica. División Económica, BCCR. lankestercv@bccr.fi.cr

Las ideas expresadas en este documento son de los autores y no necesariamente representan las del Banco Central de Costa Rica.
Abstract

This paper studies the determinants of the labor demand in Costa Rica through firm level data. It also characterizes formal employment during the last 15 years through a set of stylized facts. The results suggest that: (i) the neoclassical theory of employment holds, (ii) wages are a stronger determinant for labor demand in the manufacturing and construction industries, (iii) employment is more persistent in larger firms, (iv) larger and more technological industries adjust their headcount more heavily to changes in wages and revenue and (v) Costa Rican labor demand is more sensitive to changes in wages but less to changes in production than similar economies.

Key words: Labor demand, labor-output elasticity, labor-wages elasticity, job creation.

JEL codes: C23, J21, J23
Labor Demand Dynamics in Costa Rica

1 Introduction

The Central Bank of Costa Rica’s strategic plan, 2015 - 2019, considers as a goal the better understanding of its economic growth; within it, the characterization of the labor market stands as a line of research. So far, this task had only been accomplished using aggregated data due to the lack of firm level data. Some of the pending research questions of this agenda can now be addressed thanks to the availability of the Registro de Variables Económicas del Banco Central de Costa Rica (BCCR) (Revec). With this database, more precise estimations are possible.

This study employs the Revec database to understand the dynamics of Costa Rica’s labor demand by estimating the labor-wage and the labor-product elasticities for the economy as a whole and across industries. Reliable estimations for the aforementioned elasticities and other dynamics of labor market such as the time-adjustment of its determinants after shocks, are valuable inputs for the economic policy design.

Therefore, the purpose of this analysis is twofold. It will characterize, for the first time using microdata, the employment of the Costa Rican formal economy and estimate the responsiveness of labor demand to changes in its determinants, specifically, revenues and wage shocks.

And, its results will enhance the empirical literature discussion across countries, given it is scarce on this topic for emerging economies, given the limited availability of producer microdata, as acknowledged by Hamermesh (1993).

Among the existing literature, neoclassical principles about employment convey an inverse relationship between labor costs and employment: when the costs increase, employment
falls because of the decreasing marginal utility of labor. Key studies in this field, such as the ones developed by Hamermesh (1988) and Arellano and Bond (1991), find a strong evidence between firms sales and employment which support them. Following, wages and revenues will be examined in this paper as the main determinants of labor demand.

Global labor markets have experienced a turbulent period in recent years as consequence of the financial crisis. Costa Rican employment was no exception. For this country, so far, the employment research has been done using survey data. Therefore, being able to use administrative data of the quasi-universe of formal constituted firms embodies a valuable opportunity of providing estimates which characterize the dynamics of employment and the effect the financial crisis of 2008 had on it. In this fashion, the aggregated employment behaviour was considered by economic categories of interest to unveil the industries with the highest growth and the ones that were more vulnerable to the crisis.

The document is organized as follows: Section two provides the empirical framework by reviewing the findings of literature on employment and labor demand determinants for developed and emerging economies. It is complemented by Section three which in the interest of clarifying the theoretical context of labor demand determinants, introduces the specification used as the labor demand function. Section four, describes the database and Section five, explains the econometric methodology used in the estimations. For the characterization of employment and its fluctuations through time, Section six describes employment by economic activity, firm size, intensity in the use of technology and geography, to be followed by Section seven, which shows the estimated labor demand elasticities and the average time-adjustment to shocks over its determinants. Finally, Section eight concludes.

2 Literature Review

Even though empirical evidence is plentiful for developed economies, estimations for labor demand in emerging countries, specially for Latin American, have been limited primarily by the lack of microdata; therefore, most of the research is based on aggregated data such as national household surveys.

Among the scarce literature, Stallings and Weller (2001) published a set of stylized facts about employment in Latin American countries throughout the nineties which pointed out that during that decade the Services industry, along with the Wholesale and Retail
industry, were the largest contributors to employment growth (34.8% and 32.7% of total new employment). Meanwhile, the Agriculture industry was the only one that saw its employment diminished (-4.3%) in this span of time. For a similar time period, nineties and early two thousands, Guerrero (2007) documents that Costa Rica had the highest growth in production and new jobs within the Central American region, but the lowest growth in wages.

Also, Gonzalez Pandiella (2016) acknowledges for the local economy the structural change of the region’s employment presented in Stallings and Weller (2001), as he points out that local employment has experienced an increased duality. This means, that it has polarized between traditional and less productive industries such as Agriculture, Manufacturing, Construction and Domestic Service businesses and highly productive industries including Services and high technology exports whose growth has been far higher than that of the primary activities.

By compiling approximately 70 studies on developed economies, Hamermesh (1993) found that the results of the wage elasticity of the demand for labor lied within the $[-0.75, -0.15]$ interval, supporting the neoclassical theory of employment. The author also pointed out that this elasticity decreases with the qualification of the employment. In other words, the more qualified the jobs, the less responsive their demand is to changes in wages. In his work, the author also argues that energy is a substitute input of labor, whereas capital is a complementary one, and technological changes are complementary specifically to qualified labor.

Compiling data for United States, Germany, France, Japan, Canada and United Kingdom, Symons and Layard (1984) found evidence for a positive product elasticity of the labor demand, lying within the $[0.03, 0.71]$ range. In a more recent effort, Hamermesh (2004), with data from Latin American economies, such as Barbados, Brasil, Chile, Colombia, Mexico, Peru and Uruguay, found labor-wage elasticities in the range between $[-0.69, -0.17]$.

Research from Bencosme (2008), Melognio and Porras (2013) and Rodriguez (2013) also show relevant findings for Latin American economies. They have used diverse methodologies to estimate the labor demand for different levels of data aggregation; their results will be compared and discussed with these research’s estimates. Bencosme (2008) found for Dominican Republic a labor-wage elasticity of $-0.215$ and labor-product elasticites of

0.802, 0.665 and 0.140 for different sample periods using industry level data from 1991 to 2006.\(^2\) Melognio and Porras (2013) estimated Uruguay’s labor demand using workers survey data with a vector error correction model.\(^3\) Their estimates for labor-wage elasticities lie between −0.11 and −0.32 and labor-product elasticities between 0.680 and 1.09, being the dependent workers with less working hours the most responsive to changes in production.

Finally for Colombia, Rodriguez (2013) uses an annual firm survey from 2000 until 2013, to estimate the labor demand with a two-stage systematic generalized method of moments for three types of workers within the Manufacturing industry: the unqualified, the administrative and the professional workers.\(^4\) He found that the demand for unqualified workers takes the longest time, on average, to adjust when its determinants change (around 6.6 years, 4.8 for administrative staff and 3.0 for professional workers) and that the demand for professional workers is the most responsive to changes in wages. The estimated long run labor-wage elasticities were −3.120, −0.808 and −1.013 and the labor-product elasticities were 0.816, 0.880 and 0.668 for the unqualified, administrative and professional workers respectively.

Regarding research on Costa Rica’s labor market, Monge (2012) and Alvarez (2018) estimated production functions for the local economy using household survey data.\(^5\) Both find that the local economy is labor intensive: Monge (2012) found a product-employment elasticity of 0.560 (0.580 considering human capital as a determinant) and Alvarez (2018) of 0.710. Despite their work not developing an estimation of the labor demand, their findings show a significant relation between production and employment.

Also for Costa Rica, Guerrero (2007) estimated a labor demand function with panel data by economic activity for the 2001-2004 period. With a linear state space model, he found a positive labor-wage elasticity of 0.341 (using minimum wage) and 0.547 (using private average wages), and labor-product elasticities of 0.848 and 0.849 respectively. The only


\(^3\)They analized four models, one per each type of worker: all workers, private sector workers, not independent workers and not independent workers with more than 30 hours labored weekly.

\(^4\)According to the author’s definition, administrative workers are involved in managerial tasks and professional workers are the qualified workers not involved in managing.

\(^5\)Both authors use the Multiple Purpose Household Survey (EHPM) carried out by the Statistics and Census National Institute (INEC).
other estimate of labor demand for this country, besides this paper, was performed by the Latin American Economic Commission (CEPAL) in 2002, using data on GDP, employment and minimum wage. Their estimated labor-wage elasticity was 0.436 for a 1980-2004 sample and 0.907 for a 1991-2001 sample; while the labor-product elasticity was 0.719 and 0.400 respectively for the mentioned sample periods. Both estimations, Guerrero (2007) and CEPAL (2002), of the labor-wage elasticity are inconsistent with the neoclassical theory of employment and the vast majority of the empirical evidence found in the literature.

Given the regional and national context, the remarkable effort made by the Central Bank of Costa Rica through the compilation of firm level data allows for more precise and updated estimations of Costa Rica’s labor market characteristics. The new research contributes to the empirical literature, and serves as relevant information for public policy recommendations. Also, the novelty and completeness of this data, will allow for further analysis that includes the dynamics and heterogeneity of labor demand such as economic activity, firm size and technology use.

3 Analytical framework

The labor demand, in this research, will follow the general definition stated by Hamermesh (1993) who delineates it as any decision taken by the employers concerning the headcount of the firm. The author argues that an appropriate way to obtain the labor demand is to start with a cost function that, as usual, depends on the factor’s production costs.

In what follows, it is assumed that production is solely determined by labor and fixed capital in the short run. This implies that the cost structure has a quasi fixed component, and as Schankerman and Nadiri (1984) suggest, a transformation function that connects the production \(y\) with a set of \(n\) variable inputs \(x = \{x_1, x_2, \ldots, x_n\}\) and a set of \(m\) fixed inputs \(z = \{z_1, z_2, \ldots, z_m\}\) can be expressed as \(T(y, x, z) = 0\).

Then, according to Lau (1976), if \(T(y, x, z) = 0\) satisfies a series of regularity conditions and the firm is trying to minimize the variable costs of employment, then cost can be expressed as a function of production \(Y\), fixed inputs \(K\) and variable costs \(w\):

6The estimations made by CEPAL (2002) for Central American countries can be found in Appendix A.
\[ C = C(w, Y, K) \quad \text{where} \quad C_i > 0; \quad i = w, Y, K \quad (3.1) \]

On the other hand, Shephard’s lemma shows that if a cost function is quasiconcave, the conditioned demand of one of its inputs can be obtained through the partial derivative of the cost function with respect of the cost of the input of interest. \(^7\) For example, the application of Shephard’s lemma to equation 3.1 results in an expression for the demand for labor \( L^d \):

\[ L^d = \frac{\partial C(w, Y, K)}{\partial w} \quad (3.2) \]

It is important to notice that hiring has a lag; is not adjusted immediately after a shock due to restrictions in the hiring of new workers or due to the costs implied in firing existing workers. Job stability policies and training may also generate frictions during the headcount adjustment process.

Arango and Rojas (2003) point that a convenient way of modelling the degree of this adjustment process is to add lags to the specification of labor demand. As it is known, at all times, the firm tries to maximize its profits. Thus, the optimality is achieved by maximizing the profit function. For a discrete-time model, Gould (1968) defines the optimal adjustment of a productive input, when the price of the product does not depend on time, by multiplying the gap, between the optimal employment level \( L^* \) and the first lag of its actual value, by its rate of adjustment, \( \gamma \):

\[ \dot{L}_t = \gamma (L^* - L_{t-1}) \quad (3.3) \]

By substituting the optimal employment level with a particular function in terms of a set of determinants \( X_t \), where \((w_t, K_t, Y_t) \in X_t\), equation 3.4 is reached:

\(^7\)More on Shephard’s lemma can be found in Jehle (2001)
Arango and Rojas (2003) point out that if the function \( G(X_t) \) is linear and its determinants do not depend on the labor demand, the expression 3.4 can be stated as:

\[
L_t = \alpha L_{t-1} + \beta X_t + \epsilon_t
\]  
(3.5)

Where \( \epsilon \) is an error term. Also, they argue that for its estimation it is necessary to assume that firms have static expectations; this implies that their hiring decisions only depend upon the contemporary determinants. They suggest to follow instead the model developed in Sargent (1978), as it similarly depends on the lags and future stock of the M determinants:

\[
L_t = \alpha L_{t-1} + \sum_{m=1}^{M} \sum_{i=-\infty}^{\infty} \mu_{m,i} E_t(X_{m,t+i}) + \epsilon_t
\]  
(3.6)

where \( \mu_{m,i} \) is the corresponding elasticity associated to determinant \( m \) lagged \( i \) periods (or \( i \) periods ahead). Keeping in mind that only past data is known, a convenient model to estimate labor demand is the following:

\[
L_t = \alpha L_{t-1} + \sum_{m=1}^{M} \sum_{i=0}^{N} \mu_{m,i} X_{m,t-i} + \epsilon_t
\]  
(3.7)

where \( M \) denotes the amount of employment determinants and \( N \) their correspondent significant lags. Equation 3.8 is the optimal specification adopted in this research. For it, as stated by Esperança et al. (2011), the short run labor elasticity associated to shocks on the variable \( X_m \) in period \( i \), is given by:

\[
\mu_{m}^{SR} = \frac{\partial L_{i,t}}{\partial X_{i,t+i}}
\]  
(3.8)
The long run elasticity can be computed when considering the cumulative effect of a shock in $X_m$ during $t$. Thus, if $|\alpha| < 1$:

$$\mu_{LR} = \sum_{i=0}^{\infty} \frac{\partial L_{i,t}}{\partial X_{i,t-j}} = \left( \sum_{i=0}^{N} \mu_{m,t-i} \right) \left( \frac{1}{1 - \alpha} \right)$$  \hspace{1cm} (3.9)

Finally, the average time that firms last adjusting their employment decisions after a change in their determinants, given by $t^*$ which is the number of periods where the gap between the employment before the shock and the optimal employment decision after the shock is closed, will be approximated following Hamermesh (2004, p.558). For models with a single dependent variable, the author estimates the speed as the number of time periods "for half the gap between old and new equilibria to be traversed". In these models with a lagged dependent variable this number is $t^* = \frac{\ln(0.5)}{\ln(\alpha)}$.

Hamermesh (1993) mentions that for small firms subject to a perfectly elastic labor supply, wage can be considered as a variable that will not be affected by individual firms. In this scenario, estimations for labor-wage elasticities allow to infer over exogenous changes in the wage observed by firms and over their labor demand. Despite the above, it is worth noting that the estimations validity may be affected by the influence firms may have in the labor market.

## 4 Data

This research makes use of the Revec database, which is constructed by the BCCR and uses inputs from several institutional sources of Costa Rica. This database contains annual data on income and expenditure per firm and data on employment averaged over the calendar year. It includes formally constituted firms, including independent professionals that carry out formal economic activities. These firms inform the institutional sources of the database about their economic activity, income, expenditure, imports, exports and give other information such as the location of their establishments. Given the firm’s identification number, a match is made with the employment data, resulting in a longitudinal database with the most desirable characteristics for research on Costa Rica’s labor market.

---

*The processing of the data occurs at BCCR under conditions that guarantee the integrity and confidentiality of the information required for the results presented in this document.*
In the aggregate, Revec has annual data, from 2005 until 2017, for 237,057 legally constituted firms. A firm is included in Revec if it reported one (or more) employee(s) in at least one month during the time span. The number of active firms has increased uninterruptedly, from 38,986 in 2005 to 57,849 in 2017. Almost two thirds of them, 62%, have an average between one to five employees, and approximately 2.7% have more than 100 employees. Finally, given their legal nature, out of the total firms, 60.1% (142,470) had a personal identification number.

Figure 1: Active firms, 2005-2017

As stated in the analytical framework, the model characterizing the labor demand will include as independent variables: wages, capital stock and revenue. Also, and in absence of a variable for the level of production, income is used as proxy. Other variables such as customs regime and industry type are considered as controls. Table 1 gives a more detailed description of these variables.

---

9 In the database, employment is also accounted for if a firm is associated with an individual using his personal identification to conduct business.

10 The others have a legal-person identification number.
Table 1: Description of variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>Headcount</td>
<td>Firms average headcount during a year.</td>
</tr>
<tr>
<td>Revenue</td>
<td>Declared income in tax form.</td>
<td>Annual cumulative in colones</td>
</tr>
<tr>
<td>Wages</td>
<td>Total labor costs</td>
<td>Annual cumulative in colones</td>
</tr>
<tr>
<td>Capital</td>
<td>Reported value of fixed assets</td>
<td>Total value in colones</td>
</tr>
<tr>
<td>Customs Regime</td>
<td>Type of regime*</td>
<td>Categorical Variable</td>
</tr>
<tr>
<td>Industry</td>
<td>ISIC Categorization</td>
<td>4-digit classification</td>
</tr>
</tbody>
</table>

*Definitive, Special or Free Zone.

Source: authors.

Additionally, variables are expressed in real terms; revenue and capital (fixed assets) are deflated with the implicit price index estimated by BCCR, while for wages, the consumer price index is used. In sum, the variables considered for the estimations are:

- Wages \((w_{i,t})\): natural logarithm of the arithmetic mean of annual real wages of firm \(i\) on year \(t\).
- Capital \((k_{i,t})\): natural logarithm of deflated fixed assets of firm \(i\) on year \(t\).
- Product \((Y_{i,t})\): natural logarithm of real income of firm \(i\) on year \(t\).
- Employment \((\eta_{i,t})\): natural logarithm of the average headcount on year \(t\) of firm \(i\).

5 Empirical Methodology

As mentioned in section 2, most estimations of labor demand elasticities for the local economy have been developed with cross-sectional data. Inferences from these estimations have limitations, as mentioned by Kuh (1959), such as the structural incompleteness of data itself and the absence of an autoregressive component. Moreover, Arango and Rojas (2003) warned about the use of establishment level (instead of firm level data), as it implies an assumption of optimality in the investment decisions of establishments, which is not necessarily the practice of business groups.

A linear model that depends on production, wages and firm’s capital as determinants for labor demand is adopted for this research. Given the considerations made in section 3 and the frequency of the available data, the model will also include lags of the variables.
production and wages. Specifically,\(^\text{11}\)

\[
L_{i,t} = \alpha \eta_{i,t-1} + \sigma_0 w_{i,t} + \sigma_1 w_{i,t-1} + \epsilon_0 Y_{i,t} + \epsilon_1 Y_{i,t-1} + \phi K_{i,t} + \lambda_t + \gamma_p + u_{i,t} \tag{5.1}
\]

Where \(L_{i,t}, w_{i,t}, Y_{i,t}\) and \(K_{i,t}\) denote the natural logarithm of the average headcount of employees, wages, revenue and fixed assets, working at firm \(i\) in period \(t\), respectively. The error term, \(u_{i,t}\), is a stochastic shock over firm’s \(i\) demand for labor in time \(t\), while \(\lambda_t\) and \(\gamma_p\) are the temporal and geographical (over province) effects respectively. The coefficients \(\sigma, \epsilon\) and \(\phi\), represent the labor elasticity of their respective determinant.

Different empirical approaches used in the literature were considered. For example, Nickell (1981) and Baltagi (2008) mention that dynamic models such as this, have a temporal correlation and thus a severe bias if estimated through ordinary least squares. Even, the first difference estimator will be biased, as stated by Anderson and Hsiao (1982), because of the moving average model attained; still, it could be amended by including instrumental variables.

Subsequently, Arellano and Bond (1991), despite pointing that the Anderson-Hsiao estimator is consistent, argue that the instrumental variable approach does not take full advantage of the information in the sample as it does not account for all the potential orthogonality conditions. They affirm that through the Generalized Method of Moments (GMM) more efficient estimators can be attained, as long as internal instruments are included. Within the possible instruments, Arellano and Bover (1995) and Blundell and Bond (1998), note that the lags of the variables at levels perform poorly for the difference of the variable, so they recommend adding the lags of the differenced variable as additional instruments. Comprising these considerations, Arellano and Bover (1995) argue that the Difference and System GMM’s are the best estimators designed for models with the following characteristics:

- data with few periods but many individuals,
- a linear econometric specification,

\(^{11}\)As will be discussed on section 7, after a general-to-specific modelling approach, a model with just one lag of the commented explanatory variables was chosen.
• a dynamic dependent variable,
• individual fixed effects, and
• independent variables that are not completely exogenous, meaning that they may be correlated with contemporary or past realizations of the error term.

Within this literature, there is another criterion that should be pondered. Nickell (1981) states that the estimated results from fixed effects for the autoregressive parameter in a dynamic model with the characteristics mentioned above, is upward biased. Hsiao (2014), on the other hand, argues that it is downward biased when estimated with ordinary least squares (OLS). Thus, the unbiased estimator for $\alpha$ should be bounded by the fixed effects and OLS estimators accordingly. Subsequently, Höffler et al. (2001) suggest that if the Difference-GMM estimator for the autoregressive parameter is less, or is close to the fixed effects estimator, then, one may infer, that the System-GMM is highly preferred on behalf of efficiency.

Finally, the characteristics of Revec allow for heterogeneity analysis on economic activity, technology use and firm size at birth. For the first, the classification by twenty economic categories from the Uniform Industrial International Classification (ISIC) up to 4 digits is used. For the second, a categorization of four levels according to the intensity usage of technology is defined by the OECD criteria. And for the third, the firm size at birth, the Ministry of Industry, Economy and Trade’s, MEIC, methodology is applied.\textsuperscript{12}

\textsuperscript{12}For a more detailed explanation on the MEIC and OECD industry classification methodologies on intensity in the use of technology and firm size, refer to appendix C
6 Stylized facts

6.1 Firm analysis

Costa Rica has experienced a significant shift in the composition of its economic model during the last two decades. After the crisis experienced at the beginning of the eighties, the economy shifted its productive model by diversifying the exports of goods and services. Since then, the tertiary sector has gained importance progressively, at the expense of the agricultural and manufacturing activities which were affected the most; while the share of the number of firms in the Services industry has gone from 54.21% in 2005 to 60.29% in 2017, the share of agricultural firms decreased from 10.64% in 2005 to 6.83% in 2017, and the manufacturing share, went from 9.61% in 2005 to 7.27% in 2017, as showed in Table 2.

<table>
<thead>
<tr>
<th>Industry</th>
<th>2005</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>10.64</td>
<td>6.83</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>9.61</td>
<td>7.27</td>
</tr>
<tr>
<td>Wholesale and Retail Services</td>
<td>25.54</td>
<td>25.61</td>
</tr>
<tr>
<td>Services</td>
<td>54.21</td>
<td>60.29</td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>8.66</td>
<td>9.19</td>
</tr>
<tr>
<td>Professional, Scientific and Technical</td>
<td>7.21</td>
<td>8.64</td>
</tr>
<tr>
<td>Construction</td>
<td>6.29</td>
<td>5.72</td>
</tr>
<tr>
<td>Other Services</td>
<td>5.61</td>
<td>6.82</td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>5.30</td>
<td>6.09</td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>4.24</td>
<td>5.03</td>
</tr>
<tr>
<td>Human Health and Social Work</td>
<td>3.41</td>
<td>4.49</td>
</tr>
<tr>
<td>Real Estate</td>
<td>3.23</td>
<td>3.27</td>
</tr>
<tr>
<td>Education</td>
<td>2.62</td>
<td>3.27</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>1.60</td>
<td>1.99</td>
</tr>
<tr>
<td>Financial Activities</td>
<td>2.05</td>
<td>1.80</td>
</tr>
<tr>
<td>Art and Entertainment</td>
<td>1.36</td>
<td>1.55</td>
</tr>
<tr>
<td>Water Supply and Waste Management</td>
<td>0.80</td>
<td>1.03</td>
</tr>
<tr>
<td>Other Activities</td>
<td>0.98</td>
<td>0.70</td>
</tr>
<tr>
<td>Public Administration</td>
<td>0.46</td>
<td>0.35</td>
</tr>
<tr>
<td>Diplomatic Activities</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Electricity and Gas</td>
<td>0.16</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Source: authors

Within these industries, the economic activities which had a larger variation in the number of active firms (at the 4-digit ISIC aggregation), from 2005 until 2017, included restaurants, personal services activities, retail sale of food and beverages, and other food services. Firms from the information technology and computer services (376% increase in active
firms), electrical installation services (251%) and medical laboratories (222%) experienced a similar trend.\footnote{Appendix D shows the business groups with the highest gains and losses in terms of active firms between 2005 and 2017. In general, activities of less qualified work had the largest decreases. For example, the number of firms involved in the cultivation of plants used to prepare beverages and other non-perennial plants, decreased by 399 firms.}

In terms of technology usage, a significant fraction has turned to be high-technology with high-employment; they have almost doubled during this time span, signalling that the economy has transitioned to more technological-intense industries. Firms classified with low intensity were 54.2\% of total firms in 2005, 52.7\% in 2011 and 50.0\% in 2017; meanwhile the ones with medium-high intensity, such as engineering and electric equipment manufacturing companies, have increased their share of total firms since 2005.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{active_firms_by_use_of_technology.png}
\caption{Active firms by their use of technology, 2005-2017}
\end{figure}

\subsection*{6.2 Employment analysis}

According to the data recorded in Revec, total employment increased 47\% between 2005 and 2017, but not uniformly. The international financial crisis can be interpreted as a
structural change for growth of employment. Before, from 2005 until 2008, its average growth was 7.15%, in 2009 it grew 0.04%, and afterwards, from 2010 until 2017, its average growth rate was 2.25%. Figure 3 shows employment level and year over year variations, while more detailed descriptions can be found in appendix E.

**Figure 3:** Employment level and growth, year over year variation, 2005-2017

In Costa Rica, employment within the public sector has represented a quarter of total formal employment, approximately, for the past decade; between 2005 and 2008, it was 24.1% on average, and between 2009 and 2017 it was 24.6%. When comparing its behaviour to employment within the private sector, they seem contrasting most of the time as shown in the right chart of Figure 4. For example, as response to the negative impact on growth from the financial crisis, the Arias-Sánchez administration implemented an expansionary fiscal policy which included a substantial and immediate increase in public employment, while the private employment suffered a significant contraction in 2009. For this year, public employment increased 10.2% while private employment decreased 3.0%.

Despite these differences, employment in both sectors have a common trait: after 2009 none of them has reached half the average growth rates experienced before the crisis: for the private employment it has gone from 8.3% for 2006-2008, to 2.5% after 2010, and for public employment, from 3.7% to 1.7%.
As in firms composition, most employment comes from the services industry with a clear upward trend. Whilst in 2005, 55.25% of total employees worked for a services firm, or as independent workers of this industry, in 2017 its share was 59.99%. As suggested by Gonzalez Pandiella (2016), this happened at the cost of employment in industries with predominantly less qualified labor, such as Agriculture and Manufacturing. This duality is clear when comparing Agriculture with firms in the Professional, Scientific and Technical industry, Information and Communications and specially in the Administrative and Support Services.

Two other relevant industries in terms of employment are Public Administration and Wholesale and Retail, which as seen in table 3 represent 13.57% and 14.73% of total employment, in 2017, respectively. Together, they account for more than a quarter of total labor, and their share has not changed significantly through time.

---

14 Public Administration includes all business groups undertaking managing duties and comprehends a subset of the previously described public sector.

15 Industries that did not account for more than 1% of total employment in 2017 were not included. Thus, Real Estate, Arts and Entertainment, Water Supply and Waste Management, Diplomatic Activities and Others are not presented in table 3.
Table 3: Total employment by industry, 2005-2017 (shares in parenthesis)

<table>
<thead>
<tr>
<th>Industry</th>
<th>2005</th>
<th>2011</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Administration</td>
<td>130,036</td>
<td>156,972</td>
<td>185,576</td>
</tr>
<tr>
<td></td>
<td>(13.98)</td>
<td>(13.19)</td>
<td>(13.57)</td>
</tr>
<tr>
<td>Wholesale and Retail</td>
<td>129,279</td>
<td>171,806</td>
<td>201,410</td>
</tr>
<tr>
<td></td>
<td>(13.90)</td>
<td>(14.43)</td>
<td>(14.73)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>120,291</td>
<td>137,526</td>
<td>144,874</td>
</tr>
<tr>
<td></td>
<td>(12.93)</td>
<td>(11.55)</td>
<td>(10.60)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>102,235</td>
<td>102,943</td>
<td>104,402</td>
</tr>
<tr>
<td></td>
<td>(10.99)</td>
<td>(8.65)</td>
<td>(7.64)</td>
</tr>
<tr>
<td>Other Services</td>
<td>75,406</td>
<td>77,685</td>
<td>81,294</td>
</tr>
<tr>
<td></td>
<td>(8.11)</td>
<td>(6.53)</td>
<td>(5.95)</td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>53,794</td>
<td>110,714</td>
<td>141,238</td>
</tr>
<tr>
<td></td>
<td>(5.78)</td>
<td>(9.30)</td>
<td>(10.33)</td>
</tr>
<tr>
<td>Human Health and Social Work</td>
<td>51,613</td>
<td>70,408</td>
<td>81,843</td>
</tr>
<tr>
<td></td>
<td>(5.55)</td>
<td>(5.91)</td>
<td>(5.99)</td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>39,312</td>
<td>52,481</td>
<td>62,560</td>
</tr>
<tr>
<td></td>
<td>(4.23)</td>
<td>(4.41)</td>
<td>(4.58)</td>
</tr>
<tr>
<td>Financial Activities</td>
<td>37,993</td>
<td>47,346</td>
<td>55,078</td>
</tr>
<tr>
<td></td>
<td>(4.09)</td>
<td>(3.98)</td>
<td>(4.03)</td>
</tr>
<tr>
<td>Education</td>
<td>34,464</td>
<td>51,253</td>
<td>60,834</td>
</tr>
<tr>
<td></td>
<td>(3.71)</td>
<td>(4.31)</td>
<td>(4.45)</td>
</tr>
<tr>
<td>Professional, Scientific and Technical</td>
<td>32,112</td>
<td>45,142</td>
<td>59,053</td>
</tr>
<tr>
<td></td>
<td>(3.45)</td>
<td>(3.79)</td>
<td>(4.32)</td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>30,516</td>
<td>40,373</td>
<td>50,309</td>
</tr>
<tr>
<td></td>
<td>(3.28)</td>
<td>(3.39)</td>
<td>(3.68)</td>
</tr>
<tr>
<td>Construction</td>
<td>29,261</td>
<td>38,868</td>
<td>49,165</td>
</tr>
<tr>
<td></td>
<td>(3.15)</td>
<td>(3.27)</td>
<td>(3.60)</td>
</tr>
<tr>
<td>Electricity and Gas</td>
<td>20,294</td>
<td>32,031</td>
<td>23,414</td>
</tr>
<tr>
<td></td>
<td>(2.18)</td>
<td>(2.69)</td>
<td>(1.71)</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>12,587</td>
<td>20,486</td>
<td>28,953</td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
<td>(1.72)</td>
<td>(2.12)</td>
</tr>
</tbody>
</table>

Source: authors
The economy’s increasing duality is evidenced by the changes in employment distribution given the intensity in the use of technology as shown in figure 5. Even when employment has increased in all categories of technology usage, total employment composition has changed in favor of technology intensive industries. In 2005, for example, 42.3% of total employment came from low-tech industries, but in 2017 only 35.8% did. Employment in medium-low and medium-high technology usage cover more than half of the total, and have increased almost 5% their proportion within these years. Meanwhile, high-intensive tech employment has more than doubled, but still represents a small share of total employment.

**Figure 5:** Employment distribution given the use of technology, 2005-2017 (headcount in thousands)

Note: labels inside bars show to the employment share of the respective category.
Source: authors.

Most of manufacturing and agricultural activities are categorized as low-tech industries. As expected, their share of total employment has reduced at the expense of employment in Services, which accounts for most of employment in the tech-intensive firms. As evidenced in figure 6, which shows employment composition through time for total and private employment, the share of private total employment in Agriculture and Manufacturing di-


minished from 11.0% and 17.3% in 2005 to 10.0% and 13.9% in 2017 respectively. On the other hand, private employment in the Services industry increased its share from 43.6% to 50.0% during the same period. Thus, there has been a clear change in employment composition in favor of the Services industry that strengthened in 2009 and that has been driven specially by the private sector.

**Figure 6:** Employment composition by industry, 2005-2017

![Employment composition by industry](image)

During this time, growth has been heterogeneous among industries. For the Construction industry, the financial crisis had a deep impact; before 2009 its employment grew above 20% annually, but in 2009 and 2010 it experienced substantial contractions, and despite experiencing the largest growth rates since then, they have been even less than half as before the crisis.

As shown in figure 7, employment was also lessened in industries as Wholesale and Retail, Manufacturing and Agriculture, which are low-tech and med-low technology intensive industries, as there were 14,412 net job losses. However, in the overall employment of the economy, there was a positive change in 2009 explained by the expansionary fiscal policy: public services employment grew 9.9%, when its average growth rate was of 3% prior to 2009. After the crisis, employment growth rates in the main industries were higher but still, lower than half their growth rates before it. Construction, for example, recovered

---

16As explained in appendix C, most of construction and manufacturing firms are classified as med-low tech firms, and agricultural firms as low-tech.
slightly after 2010 and had a considerable boost in 2016.

**Figure 7: Employment yearly growth rate by industry and technology usage, 2006-2017**

![Figure 7: Employment yearly growth rate by industry and technology usage, 2006-2017](image)

As shown by Criscuolo et al. (2014), the majority of firms in OECD countries have less than 10 employees: approximately 80% of total firms in Italy, Finland, New Zealand, Spain, Hungary and the Netherlands. In Costa Rica, for 2005, 78.16% of active firms had between one and ten employees, and for the year 2017 a 79.30% of total did. Meanwhile, firms with more than 100 workers have been 2.7% on average. Even when their percentage is low, given the total number of firms, 66.5% of workers in the private sector, on average, pertain to firms with more than 100 employees. Smaller firms account only for 6.8% of the employment. As seen in figure 8, composition of firms have changed slightly in favor of smallest firms, opposite to what has happened to employment composition by firm size.

Considering the average number of workers per firm within the private sector, as shown in Figure 9, Administrative and Support Services show the highest average headcount at 41. This industry, considers firms in activities such as security services, travel agencies, building cleaning services and other human resources, and call centers. The latter has an average of 273 employees, which explain the category headcount mean. Appendix F shows that this mean has not changed significantly over time. Finally, appendix K compares Revec and Employment Continious Survey (ECE) formal employment aggregates.
**Figure 8:** Firm and employment composition by headcount in the private sector, 2005-2017

![Firm and Employment Composition Chart]

Source: authors.

**Figure 9:** Employment mean by industry within the private sector (2005-2017)

![Employment by Industry Chart]

Source: authors.
6.3 Job creation and destruction

Harmonized panel data from firm registers allow to separate net job creation into job creation and destruction indicators. Following Criscuolo et al. (2014), gross job creation in a specific year $t$ can be quantified as the sum of all positive variations ($\Delta E_{i,t}^+$) in firms headcount from year $t-1$ to year $t$:

$$GJC_t = \sum_i N_i \Delta E_{i,t}^+$$

(6.3.1)

Similarly, job destruction can be gauged as the absolute value of the sum of the negative variations in headcount, i.e. $|\Delta E_{i,t}^-|$:

$$GJD_t = \sum_i N_i |\Delta E_{i,t}^-|$$

(6.3.2)

Finally, net job creation is the difference between job creation and job destruction:

$$NJC_t = GJC_t - GJD_t$$

(6.3.3)

As discussed before, net job creation has differed for the private and public sectors. Private gross job creation grew at rates of 10% in 2007 and 5.7% in 2008, but shrank 29.2% in 2009. The opposite happened in the public sector during 2009. As consequence of the expansionary fiscal policy, job creation had a year over year change of 140.2%, going from 11,635 gross jobs created in 2008 to 27,941 in 2009.

After 2009 private employment has experienced a positive net growth, but it has been lower than the net growth rate it had before the crisis. Figure 10 shows that the net job creation (private job creation to destruction ratio) has remained quite stable since 2010 for the private sector. On the contrary, employment in the public sector has been more volatile. For example, Figure 10 shows how immediately in 2010 public gross job destruction increased by 890.8%, and how in 2014, public job creation almost three folded with respect to the prior year.

It is relevant to consider that the gross numbers showed in Figure 10 consider the contribution of exiting firms in job destruction and entering firms for job creation. However, most of job creation and destruction happens in incumbent firms, thus it is necessary to extend
Figure 10: Job creation and destruction by sector, 2006-2017

Figure 11: Private incumbent firms: job creation and destruction by industry, 2006-2016

Note: Employment from firms classified in “Other Industries” is not accounted for in the industries graph.

Source: authors.
Employment in Construction is far more volatile than any other industry. Job destruction in incumbent construction firms represented during 2009 a 28.4% of its total employment, substantially higher than the 7.9%, 9.6%, 8.0% and 4.2% in Agriculture, Manufacturing, Wholesale and Retail and Services industries respectively. However, despite this figure being comparably high, this was not a particular phenomenon for 2009, as seen in Figure 12, the percentage that the job creation and destruction represent out of total employment for this industry is significantly higher than for the rest.

**Figure 12:** Percentage of job creation and destruction out of total employment by industry, 2006-2016

![Figure 12](image)

Source: authors.

For Agriculture, an average of 80.2% of new jobs are created by incumbent firms, and for Manufacturing the share is of 83.9%. Services and Wholesale and Retail follow with a 70.3% and 70.0% respectively. However, a considerably higher fraction of new employment in construction is created by new firms, making the indicator substantially lower at 62.9%.

On the other hand, the share of incumbent firms in total job destruction is also high in the construction industry (averaging 60.3% of total job destruction). Manufacturing incumbent firms also contribute considerably to job destruction, with a 66.5% of total. Wholesale and Retail (56.7%) and Agriculture (54.4%) follow. This share is considerably lower for the Services industry (43.6%).

From this evidence, there are three remarks to be made. First, job destruction in the most technology intensive firms has been strongly surpassed by job creation, and thus, in net,

---

17 Refer to appendix G for detailed graphs.
its employment has experienced a larger growth than the employment of low-tech firms.
Second, job rotation is linked to economic cycles in all industries, but more evidently in
construction firms. And third, most of the new jobs come from incumbent firms, specially
in less qualified industries such as Agriculture and Manufacturing, while incumbent firms
in industries related to more qualified jobs contribute less to job destruction than industries
related to less qualified employment.

6.4 Wages and revenue in the private sector

Kapsos (2006) and Khan et al. (2007) show empirical evidence of a positive relationship
between production and total employment in several economies. On this line, for Costa Rica, Figure 13 depicts the percentage change of average wages, total employment and revenue by categories from 2005 until 2017.

Employment growth was proportional to the intensity in the use of technology: high-tech
employment grew 133%, med-high employment 85.8%, med-low 69.7% and employment in
low-tech firms just 24.2%. As seen earlier in this section, and detailed in appendix C, high-
technology firms include those that develop activities such as pharmaceutical, electronic
and medical devices manufacturing, which despite having a substantial growth during the
last decade still hire a small share of the workforce. On the other hand, employment
in industries such as Information and Communication (132.9%) and Administrative and
Support Services (162.2%), which are classified as medium-high tech intensive firms, have
had the largest growth by the 4-digit ISIC industries aggregation. Contrarily, employment
in Agriculture (2.1%), Manufacturing (20.4%) and Art and Entertainment (14.6%) had the
smallest growth rates.

For the Costa Rican data, there is evidence of a high and positive correlation between
income and wages: larger income growth apparently translates into a larger average wages
growth. Within them, high-technology firms show the highest growth in both, influenced
by growth in financial and information, and communication activities.

On the contrary, firms with the lowest technology intensity had the lowest growth in revenue
and wages. On average, wages in agricultural firms, for example, grew less than half than
those high-technology firms, and firms in the educational field, which are among the lowest
income-growth activities, had the smallest average wages growth.
Within the financial and information and communication industries, businesses such as computer programming (108.6%), insurance brokers (183.2%) and financial leasing (141%) experienced the largest growth on average wages among high employing industries. The former was the activity with the largest revenue growth: 568% in programming related activities. Contrarily, private college (−42.5%), high school(−26.8%) and primary (−13.8%) education centers experienced a substantial contraction on average wages.

**Figure 13:** Average wages, total income and total employment changes from 2005 to 2017

Figure 14 shows wages, revenue, profit and fixed assets per employee in the private sector. It exhibits that high-tech firm’s average wage more than doubles that of the low-tech firms. However, this does not translate into absolute higher profits, as the most profitable businesses are related to finance and insurance, which are classified as medium-high tech firms. In terms of profits, services and manufacturing have a high return, and low-tech firms are less profitable, specially agricultural firms which in certain years even had losses. Finally,
fixed assets per employee are inversely proportional to the intensity in the use of technology.
Employment in Free Trade Zones (FTZ’s) has increased from a 28,339 headcount (3.0% of total employment) in 2005 to 100,034 (7.3%) in 2017. While the number of firms increased from 137 to 313. In general, these firm’s indicators such as revenue, wages and employment growth rates, have a higher and more volatile behaviour than for the rest of the economy. They also pay the highest wages, are the most profitable and have had the highest fixed assets per employee for most part of the last decade.

---

19 In Costa Rica, firms in the free trade zone are exempt of taxes on local purchases of goods and services, on imports and exports. They also pay a lower income tax, and depending on the FTZ’s geographical location they might be completely exempt of it.
An important remark should be made towards public employment. Given the high percentage of qualified activities within the public sector, its wages have been substantially higher than the private sector average; from 2005 until 2017, average public wages grew 45.9%, whilst average wages in the private sector grew 37.8%.

### 6.5 Geography of employment

Costa Rica’s urban area is defined as the Greater Metropolitan Area (GMA)\(^{20}\). It has experienced immigration from rural areas, and a differentiated expansion in population and growth. In terms of employment density, the difference is substantial: for 2017, in rural cantons, such as La Cruz and Golfito, the average is 1.3 worker(s) per square kilometer, while in the capital city it averages 10,875.

For 2005, the first year for which there is information in the database, there were 727,019 (78.2% of total employment) workers in firms within the GMA, and in 2017 there was a total headcount of 887,313 (79.5%). Between these years, the cantons of Heredia, Santa Ana, Escazú and Curridabat increased their share of total employment in 2.3%, 1.8%, 1.6% and 0.8% respectively. On the other hand, between 2005 and 2017, employment in rural cantons such as Pérez Zeledón and San Ramón, decreased their share of total employment from a 2.4% and 2.3% to 1.7% for both.

Economic activities also differ between cantons. In 2005, only 45 cantons out of 81 had services as its predominant employer. For 2017, the number had increased to 58 out of the 82\(^{21}\) (or 25 out of the 31 cantons in GMA) mainly because of the change from Manufacturing and Wholesale and Retail to Services. Santa Ana, Cartago and Belén are among the cantons whose employment in Services relevance increased the most.

The GMA also entails almost all of the public sector’s employment (94.5%), and high employing activities with high average wages. For example, computer programming firms (96.5%), administrative office services (96.4%) and financial leasing (97.4%) concentrate almost all of its hiring in the GMA and are among the better paying industries. Thus, Belén, Flores, Santa Ana, San José and Escazú have the highest average wages (for the

---

\(^{20}\)The GMA is the main conurbation of Costa Rica. It comprehends most of urban cantons in the province of San José, the capital city, and in the surrounding provinces: Cartago, Alajuela and Heredia.

\(^{21}\)Before 2017 there were 81 cantons but, in that year Río Cuarto was declared as an independent canton from Grecia. Thus, Revec does not differentiate between firms in them.
Figure 15: Geographical description of employment within the private sector

A) Shows employment in 2017 per square kilometer.
B) Shows the cantons that acquired (or lost) more than 0.25% of total employment in 2017 in comparison to 2005.
C) Shows the economic activities that had the most employment in 2017.

Source: authors.

private sector), which are three times higher than the average wage of Buenos Aires and Nandayure, cantons with the lowest average wage. These two cantons have agriculture as its main activity. There is a significant difference between the wages from cantons in the GMA and the rest; it is almost double, as shown in the choropleth map, Figure 16.

7 Results

The empirical framework presented in Section 3 is valid in the context of private markets. Therefore, this research will exclude the cases where employment decisions may consider other factors than market forces. The first case is public employment, which is strongly related to political outcomes, and the second, is the banking industry, where financial market imperfections given its industrial organization (as the government owns the main commercial banks) also have a substantial impact over employment decisions. Hence, the sample used for estimation purposes considers only non-financial private firms. Otherwise, the inclusion of all firms would underestimate the effect of market conditions over employment.

Additionally, the estimation sample only considers firms with a median employment greater
Figure 16: Choropleth of annual average wages in 2017 (millions of colones of 2015)

Note: Due to the lack of information for Río Cuarto as specified in footnote 21, it appears in the map with a null average wage.

Source: authors.

than five because the inclusion of smaller operations such as self-employed individuals or (very) small firms may generate a downward bias of real effects of wage and revenue changes over employment.\footnote{Alternative estimations considering firms with median greater than three employees are shown in appendix I.}

As data is in levels, stationarity tests are required, among them, Baltagi (2008) stated that for the sake of robustness it is necessary to perform several unit-root tests and to distinguish between the different properties of each. Therefore, all variables of the model (employment, average wages, revenue and fixed assets) were tested using Levin, Lin and Chu (LLC), Breitung, Im, Pesaran and Shin (IPS), ADF-Fisher and Phillips-Perron-Fisher (PPF).

For most tests, the null hypothesis of series being a unit-root process was rejected, with the exception of the Breitung test. Because this assessment and the LLC assume that all
unit-root stochastic processes are equal,\textsuperscript{23} this result is not troubling, as the data comes from a panel, and the condition stated by Baltagi (2008) for them to be valid (\(\frac{\sqrt{N}}{T}\) must asymptotically approach zero)\textsuperscript{24} does not hold, considering that this dataset has over 12,000 firms over twelve years. Results are shown in table 4.

<table>
<thead>
<tr>
<th>Test</th>
<th>Levin, Lin &amp; Chu</th>
<th>Breitung</th>
<th>Im, Pesaran &amp; Shin</th>
<th>ADF-Fisher</th>
<th>PP-Fisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment ((L_i,t))</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Wages ((w_{i,t}))</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Revenue ((Y_{i,t}))</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Fixed assets ((K_{i,t}))</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Source: authors.

The model presented in section 5 was chosen, and due to the lack of information contributed by further lags, only one lagged period was included.\textsuperscript{25} The results of estimating the model for the specified categories, with over 500 firms, are summarized in table 5.

In terms of methodology, the OLS, fixed-effects and first-difference GMM estimators were compared to assess the autoregressive parameter of the latter. As seen in table 5, the observed first lag parameter of the first-difference GMM model for all firms is 0.851; a result bounded by the fixed effects (0.483) and the OLS (0.859) estimated coefficients. However, this does not hold for the remaining estimations, which suggests as a best strategy to follow Höffler et al. (2001) who stated that different models are chosen to elicit the coefficients of interest based on the OLS-fixed effects criteria.

In accordance, elasticities for the Manufacturing, Wholesale and Retail industries and micro firms at birth are inferred over the first-difference GMM estimator. Furthermore, both GMM autorregresive coefficients for the estimations of the Accommodation and Food Services, and Information and Communication, were outside the specified threshold. For those cases, the System GMM is preferred. Notwithstanding, when comparing first-differences and system GMM models, the estimated coefficients do not differ considerably.

Additionally, the exogeneity and autocorrelation tests indicate that residuals show first-order autocorrelation (but not any further) and the instruments are exogenous. Finally, in

\textsuperscript{23} In contrast, in the remaining tests each group is assumed to have different components in their stochastic processes.

\textsuperscript{24} Where \(N\) is the amount of cross-sections and \(T\) refers to the periods of time.

\textsuperscript{25} Models with up to four lags of the independent variables were considered, as well as a general to specific approach.
In order to correct the underestimation of the standard errors of the two-step estimators the suggestion by Windmeijer (2005) is followed.

Given the model results, Costa Rican labor demand elasticities are within the range showed by Hamermesh (1993) and close to those of Latin American related literature.

In general terms, considering all firms, an increase of a percentage point in their revenue, causes an increase of 0.435% in next year’s employment. Analogously, an increase of one percent in firm’s wages leads to a 0.358% decrease in the following year’s employment.

When considering different characteristics of the firms, the estimated elasticities have the expected sign but are heterogeneous in magnitude. For the included industries, there is a significant heterogeneity in the relationship of the firm’s size at birth and intensity in the use of technology to employment.

Estimated industries adjustment to changes in revenue is quite different. Firms in the Construction, Accommodation and Food Services, and Administrative and Support Services seem to adjust employment substantially more after shocks in revenue than firms in Agriculture and in Transportation and Storage activities. However, the higher the firm’s intensity in the use of technology, the higher the labor elasticity associated to revenue. Another feature suggested by the results is that the larger the firm size at birth, the more it adjusts its employment to changes in revenue. The elasticities of employment derived from 1% increase in revenue, lie within a range of 0.361% increase for the micro firms and 0.462% increase for the larger firms.

The results show that a percentage point increase in wages has a negative effect on employment in a 0.358% a year afterwards. However, a negative causal relationship between wage rate increases and employment was not found for all industries and firm categories.

For those industries where it is the case, results are quite heterogeneous. When comparing, larger labor-wage short run elasticities were found for industries with less qualified jobs in a larger proportion. For the Construction and Manufacturing industries, for example, there were of $-0.949$ and $-0.749$ respectively, while for Professional, Scientific and Technical activities, $-0.326$, and Administrative and Support Services, $-0.308$.

Given the higher labor-wage elasticity in the Construction industry, and its importance in the medium-low intensity technology usage classification, other industries elasticities within the same group were biased upwards. Still, firms classified as high intensity in the
Table 5: Labor demand elasticities

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated coefficients</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$L_{i,t-1}$</td>
<td>$\epsilon_0$</td>
</tr>
<tr>
<td>All firms</td>
<td>0.851***</td>
<td>0.435***</td>
</tr>
</tbody>
</table>

### Industry categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated coefficients</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>0.817****</td>
<td>0.130**</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.737***</td>
<td>0.401***</td>
</tr>
<tr>
<td>Construction</td>
<td>0.513***</td>
<td>0.513***</td>
</tr>
<tr>
<td>Wholesale and Retail</td>
<td>0.616***</td>
<td>0.407***</td>
</tr>
<tr>
<td>All Services</td>
<td>0.792***</td>
<td>0.515***</td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>0.855***</td>
<td>0.228***</td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>0.749***</td>
<td>0.502***</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>0.860***</td>
<td>0.371***</td>
</tr>
<tr>
<td>Professional, Scientific and Technical</td>
<td>0.669***</td>
<td>0.474***</td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>0.841***</td>
<td>0.687***</td>
</tr>
</tbody>
</table>

### Categories by intensity in the use of technology

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated coefficients</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.800***</td>
<td>0.256***</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>0.788***</td>
<td>0.496***</td>
</tr>
<tr>
<td>Medium-High</td>
<td>0.652***</td>
<td>0.507***</td>
</tr>
<tr>
<td>High</td>
<td>0.840***</td>
<td>0.766***</td>
</tr>
</tbody>
</table>

### Firm size at birth categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated coefficients</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>0.365***</td>
<td>0.313***</td>
</tr>
<tr>
<td>Small</td>
<td>0.806***</td>
<td>0.384***</td>
</tr>
<tr>
<td>Medium</td>
<td>0.897***</td>
<td>0.399***</td>
</tr>
<tr>
<td>Large</td>
<td>0.924***</td>
<td>0.462***</td>
</tr>
</tbody>
</table>

### Free Trade Zones

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated coefficients</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free trade zones</td>
<td>0.905***</td>
<td>0.332***</td>
</tr>
</tbody>
</table>

Note: system-GMM estimations are identified with $\otimes$ and first-difference GMM estimations with $\circ$.

Source: authors

The use of technology also seem to adjust significantly its employment to changes in wages.

When considering the size of the firm, no association could be established for small firms, but substantial labor-wage elasticities were estimated for large firms. Furthermore, firms under the free trade zone regime seem to be very elastic to changes in wages in the short run, as their elasticity is larger than one: when wages increase in one percent, they decrease their employment more than one percent in subsequent years.

The estimations, given the results of the autoregressive parameter, show that employment persistence in Costa Rica is close to the results from the literature. This research finds an autorregressive parameter of 0.851, while Blundell and Bond (1998) got a result of 0.810 for the United Kingdom, and Rodriguez (2013) found for the Colombian manufacturing
sector a result of 0.901 for blue-collar workers, 0.866 for administrative staff and 0.797 for professional staff. When considering the firms’ size, larger firms seem to have more persistent employment, whereas when considering the intensity in the use of technology, there is no evidence of a relationship with employment persistence.

The mean adjustment time to shocks in labor demand determinants is of 4.3 years, indicating a more rigid labor market when compared to the United Kingdom as Blundell and Bond (1998) estimated its mean adjustment time as 3.3 years, but not as rigid as the estimated mean adjustment time of 5.3 years found by Esperança et al. (2011) for the Portuguese economy.

The results for the Costa Rican labor market differentiating by industry, technology usage, firm size and tax regime (Free Trade Zone), are shown in table 6. In general, the main differences do not seem to be from the type of industry nor the technology intensiveness but the firm size. The larger the firms, the more persistent the employment and thus, the longer it lasts to reach the new headcount equilibrium.

To conclude this analysis of Costa Rica’s labor market, it is necessary to look at the long run elasticities. For all categories, effects of changes in revenue seem to be slightly larger in the long run. For the whole economy a one percentage increase in revenue leads to a 0.457% increase in employment in the long run, marginally higher from the short run elasticity which was 0.435%. The difference is substantially larger in the manufacturing industry, for the labor-revenue elasticity, as the long run elasticity three folds the short run.

Seems appropriate to clarify that employment persistence does not necessarily imply higher long run labor-wage elasticities for all industries, as results show, the response of labor demand is greater in the short run than in the long run, suggesting that firms may overreact to wage rate increases, but the effect is slightly offset as time passes by. Negative effects of wage increases seem to be persistent for large firms and those with higher intensity in the use of technology. Those firms labor demand show a larger long-term response to wage changes due to their considerably higher job persistence.

\[26\text{Long run elasticities were estimated only for categories for which contemporaneous revenue and wages resulted to be significant at least at the 10\% level.}\]
Table 6: Mean adjustment time and long run elasticities

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean adjustment time (years)</th>
<th>Long run $\epsilon$</th>
<th>Long run $\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All firms</td>
<td>4.3</td>
<td>0.457</td>
<td>-0.235</td>
</tr>
<tr>
<td>Industry categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>3.4</td>
<td>0.557</td>
<td>-</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>2.3</td>
<td>1.399</td>
<td>-0.563</td>
</tr>
<tr>
<td>Construction</td>
<td>1.0</td>
<td>0.564</td>
<td>-0.805</td>
</tr>
<tr>
<td>Wholesale and Retail</td>
<td>1.4</td>
<td>0.591</td>
<td>-0.188</td>
</tr>
<tr>
<td>All Services</td>
<td>3.0</td>
<td>0.683</td>
<td>-</td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>4.4</td>
<td>0.607</td>
<td>-</td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>2.4</td>
<td>0.697</td>
<td>-</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>4.6</td>
<td>0.671</td>
<td>-</td>
</tr>
<tr>
<td>Professional, Scientific and Technical</td>
<td>1.7</td>
<td>0.574</td>
<td>-0.184</td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>4.0</td>
<td>0.923</td>
<td>-0.277</td>
</tr>
<tr>
<td>Categories by intensity in the use of technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>3.1</td>
<td>0.385</td>
<td>-</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>2.9</td>
<td>0.533</td>
<td>-0.472</td>
</tr>
<tr>
<td>Medium-High</td>
<td>1.6</td>
<td>0.675</td>
<td>-0.443</td>
</tr>
<tr>
<td>High</td>
<td>4.0</td>
<td>0.850</td>
<td>-0.644</td>
</tr>
<tr>
<td>Firm size at birth categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro</td>
<td>0.7</td>
<td>0.472</td>
<td>-</td>
</tr>
<tr>
<td>Small</td>
<td>3.2</td>
<td>0.397</td>
<td>-</td>
</tr>
<tr>
<td>Medium</td>
<td>6.4</td>
<td>0.441</td>
<td>-0.914</td>
</tr>
<tr>
<td>Large</td>
<td>8.8</td>
<td>0.463</td>
<td>-2.540</td>
</tr>
<tr>
<td>Free Trade Zones</td>
<td>6.9</td>
<td>0.274</td>
<td>-0.400</td>
</tr>
</tbody>
</table>

Source: authors.

8 Conclusions

This research uses a novel dataset to study labor market dynamics for the Costa Rican economy, and contributes to the literature of labor demand in two main areas. First, it characterizes the formal labor market by analyzing data of more than a decade, and second, it estimates a labor demand equation where the elasticity results comply with the neoclassical theory and complements its results by estimating long run responses considering labor persistence.

On the first contribution, total formal employment, average wages, and revenues for the firms were characterized for a twelve year span that encompasses the most recent international financial crisis, from 2005 until 2018. During this period, the relative importance of the services industry has increased significantly, driven specially by technology and knowledge intensive industries, whereas other activities in which less qualified labor prevails, such as Manufacturing and Agriculture, reduced their relative importance. However, all
industries had a common trait: they had higher employment growth rates in the years prior to the financial crisis than afterwards.

In terms of firm size, employment had a quite homogeneous structure. Few large firms concentrated most of the employment in an economy full of small firms. As most of these large firms are located in the Great Metropolitan Area, employment is more concentrated there and the headcount has increased in highly intensive knowledge activities, thus higher average wages are paid in this region.

When considering job rotation, it seems to be present in all of the analyzed industries, but is considerably higher in Construction, for which most of new jobs go to newborn firms. For Agriculture and Manufacturing, most new jobs come from incumbent firms. These firms, in general, are in industries related to more qualified jobs and contribute less to job destruction, thus it might be said that incumbent firms in Services have a much more stable headcount over time than the rest of industries.

On the second contribution, the estimation for the labor demand of the entire economy had the expected sign predicted by neoclassical employment theory. Results show a labor elasticity of 0.435 associated to revenue and a −0.358 response to wages. Still, it turned to be significant to consider different characteristics as heterogenous results were showcased across industries.

Given the results of this research, the responsiveness of employment to changes over revenue and wages seems to be correlated to firm’s size at birth in the short and long run. This characteristic also seems to determine the estimated mean adjustment time of employment, as it was 4.3 years when considering all firms, but it turned significantly longer for larger firms. When analyzing the persistence of the negative effects of wage increases there is also a difference by firm size at birth, as it is larger in the long run for larger firms. For the rest of the business groups this negative effect was slightly offset in time.
Bibliography


Appendices

A  CEPAL(2002) labor demand elasticities for Central American countries

Table A1: Labor-product ($\epsilon$) and labor-wage elasticities ($\sigma$) estimations for Central American countries

<table>
<thead>
<tr>
<th>Country</th>
<th>$\epsilon_y$</th>
<th>Years</th>
<th>$\epsilon_y$</th>
<th>$\epsilon_w$</th>
<th>$R^2$</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEPAL (2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>0.80</td>
<td>1980-2004</td>
<td>0.719</td>
<td>0.436</td>
<td>0.960</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1991-2001</td>
<td>0.400</td>
<td>0.907</td>
<td>0.873</td>
<td>11</td>
</tr>
<tr>
<td>El Salvador</td>
<td>1.42</td>
<td>1994-2002</td>
<td>0.614</td>
<td>0.193</td>
<td>0.936</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1980-2004</td>
<td>0.347</td>
<td>0.443</td>
<td>0.927</td>
<td>25</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.86</td>
<td>1980-2004</td>
<td>0.963</td>
<td>0.007</td>
<td>0.914</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1986-2003</td>
<td>0.613</td>
<td>0.519</td>
<td>0.794</td>
<td>18</td>
</tr>
<tr>
<td>Honduras</td>
<td>1.61</td>
<td>1985-2004</td>
<td>1.187</td>
<td>-0.629</td>
<td>0.915</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1995-2003</td>
<td>1.005</td>
<td>-0.278</td>
<td>0.900</td>
<td>9</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.05</td>
<td>1991-2004</td>
<td>0.660</td>
<td>0.082</td>
<td>0.865</td>
<td>14</td>
</tr>
<tr>
<td>Panama</td>
<td>1.08</td>
<td>1991-2002</td>
<td>0.672</td>
<td>0.128</td>
<td>0.947</td>
<td>12</td>
</tr>
</tbody>
</table>

Source: Guerrero (2007).
B Profit function approach in a continuous-time model

In a continuous-time model, a way of getting such specification, following Hamermesh (1990), is to assume quadratic costs:

\[
C(\dot{L}) = a\dot{L} + b\dot{L}^2, \quad \text{where} \quad a > 0 \quad \text{and} \quad b > 0
\]  
(B1)

where, \( \dot{L} \) denotes the percentage change of headcount over time. Then, equation B2 shows the marginal costs of an additional worker:

\[
CMg(\dot{L}) = \frac{\partial C(\dot{L})}{\partial \dot{L}} = a + 2b\dot{L}
\]  
(B2)

Gould (1968) proposes B3 as a profit function approach for a continuous-time model:

\[
max_{L_t} \Pi = \int_0^\infty e^{-rt}(F(L_t) - wL_t - C(\dot{L})) \, dt
\]  
(B3)

where \( w \) denotes the wages (and only variable cost of the model), \( r \) the discount rate for profits, and \( F(L_t) \) the production function. This function shows positive but decreasing marginal returns, i.e. \( F'(L) > 0 \) and \( F''(L) < 0 \). In this case, the first order condition for the inter-temporal problem will be the corresponding Euler equation:

\[
2b\ddot{L}_t - 2br\dot{L}_t + F'(L_t) - w - ra = 0
\]  
(B4)

which implies that in the steady-state, the optimum employment level must satisfy equation B5:
\[ F'(L^*) = w + ra \]

In models without rigidities, the optimality condition establishes that the worker’s marginal production must be equal to its marginal cost, measured by the wage level. As shown in B5, for this case, marginal costs are higher as “ra” is strictly positive; therefore, the optimal employment will be lower.
C Firm categorization methodologies

In order to describe employment and its behaviour to changes on its determinants on different type of firms, some existent classifications were used. Specifically, the methodologies used to classify firms by industry, technology intensity and firm size which were followed in this research are explained as follows.

C.1 Categorization by industry

Twenty industries were defined based on the 4-digits International Standard Industrial Classification (ISIC). The categories were based on the Clasificación de Actividades Económicas de Costa Rica (CAECR-2011). However, the Mining and Quarrying industry proposed on the CAECR-2011 includes the firms that does not have an ISIC code associated and is called as Others. Finally, an additional classification that includes all the services industries is proposed. Table C1 shows how industries were classified.

**Table C1: Industry classification**

<table>
<thead>
<tr>
<th>Industry</th>
<th>ISIC 2-digit code</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>01-03</td>
<td>Includes cattle raising, fishing and forestry.</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>10-33</td>
<td></td>
</tr>
<tr>
<td>Electricity and Gas</td>
<td>35</td>
<td>Includes electricity, gas and steam suppliers and air conditioning activities.</td>
</tr>
<tr>
<td>Construction</td>
<td>41-43</td>
<td></td>
</tr>
<tr>
<td>Wholesale and Retail</td>
<td>45-47</td>
<td></td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>49-53</td>
<td></td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>55-56</td>
<td></td>
</tr>
<tr>
<td>Information and Communication</td>
<td>58-63</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Professional, Scientific and Technical</td>
<td>69-75</td>
<td></td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>77-82</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Human Health and Social Work</td>
<td>86-88</td>
<td></td>
</tr>
<tr>
<td>Art and Entertainment</td>
<td>90-93</td>
<td></td>
</tr>
<tr>
<td>Other Services</td>
<td>94-96</td>
<td></td>
</tr>
<tr>
<td>Financial Activities</td>
<td>64-66</td>
<td></td>
</tr>
<tr>
<td>Public Administration</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Diplomatic Activities</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Not previously classified</td>
<td>Includes mining and quarrying.</td>
</tr>
<tr>
<td>Services</td>
<td>Code &gt; 49</td>
<td></td>
</tr>
</tbody>
</table>

Source: authors.
C.2 Technology intensity

This classification is based on the OECD proposal, which has two different criteria to classify manufacturing and services firms. The fraction of profits invested in research and development is the criterion used for the manufacturing industries, while the classification for services firms is based on the qualification of its workforce and the intensity in the use of high technology (known as a knowledge-intensive criteria). The details are further explained in Hatzichronoglou (1997) and in Abdal et al. (2016). Table C2 describes the ISIC codes OECD establishes for the four different classifications.

<table>
<thead>
<tr>
<th>Activity</th>
<th>ISIC 2-digit code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, livestock, hunting and related service activities</td>
<td>1</td>
</tr>
<tr>
<td>Forestry and timber extraction</td>
<td>2</td>
</tr>
<tr>
<td>Fisheries and aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>Production of food products</td>
<td>10</td>
</tr>
<tr>
<td>Preparation of beverages</td>
<td>11</td>
</tr>
<tr>
<td>Manufacture of tobacco products</td>
<td>12</td>
</tr>
<tr>
<td>Manufacture of textile products</td>
<td>13</td>
</tr>
<tr>
<td>Manufacture of leather products</td>
<td>15</td>
</tr>
<tr>
<td>Production of wood, wood products (except furniture) and straw</td>
<td>16</td>
</tr>
<tr>
<td>Manufacture of paper and paper products</td>
<td>17</td>
</tr>
<tr>
<td>Printing and playback of recordings</td>
<td>18</td>
</tr>
<tr>
<td>Furniture manufacturing</td>
<td>31</td>
</tr>
<tr>
<td>Other manufacturing industries</td>
<td>32</td>
</tr>
<tr>
<td>Wholesale and retail</td>
<td>45-47</td>
</tr>
<tr>
<td>Land transport and pipelines</td>
<td>49</td>
</tr>
<tr>
<td>Postal services and courier services</td>
<td>53</td>
</tr>
<tr>
<td>Accommodation and food services</td>
<td>55-56</td>
</tr>
<tr>
<td>Rental and leasing activities</td>
<td>77</td>
</tr>
<tr>
<td>Recruiting activities</td>
<td>78</td>
</tr>
<tr>
<td>Activities of associations</td>
<td>94</td>
</tr>
<tr>
<td>Personal service activities</td>
<td>96</td>
</tr>
<tr>
<td>Households as employers of domestic work</td>
<td>97</td>
</tr>
<tr>
<td>Activities of organizations and extraterritorial bodies</td>
<td>99</td>
</tr>
<tr>
<td>Activity</td>
<td>ISIC 2-digit code</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Mining and quarrying</td>
<td>5-9</td>
</tr>
<tr>
<td>Manufacture of coke fuel and refined petroleum products</td>
<td>19</td>
</tr>
<tr>
<td>Manufacture of rubber and plastic products</td>
<td>22</td>
</tr>
<tr>
<td>Manufacture of metal products (Except machinery and equipment)</td>
<td>25</td>
</tr>
<tr>
<td>Manufacture of other transport equipment</td>
<td>30</td>
</tr>
<tr>
<td>Repair and installation of machinery and equipment</td>
<td>33</td>
</tr>
<tr>
<td>Electricity and gas</td>
<td>35</td>
</tr>
<tr>
<td>Water supply and treatment</td>
<td>36-39</td>
</tr>
<tr>
<td>Construction</td>
<td>41</td>
</tr>
<tr>
<td>Transportation and storage</td>
<td>52</td>
</tr>
<tr>
<td>Real estate</td>
<td>68</td>
</tr>
<tr>
<td>Tour operators</td>
<td>79</td>
</tr>
<tr>
<td>Service activities for buildings and landscapes</td>
<td>81</td>
</tr>
<tr>
<td>Administrative and support services</td>
<td>82</td>
</tr>
<tr>
<td>Repair of computers and appliances for personal and domestic use</td>
<td>95</td>
</tr>
</tbody>
</table>

**Medium-High intensity**

<table>
<thead>
<tr>
<th>Activity</th>
<th>ISIC 2-digit code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture of chemical substances and products</td>
<td>20</td>
</tr>
<tr>
<td>Manufacture of common metals</td>
<td>24</td>
</tr>
<tr>
<td>Manufacture of metal products (except machinery and equipment)</td>
<td>25</td>
</tr>
<tr>
<td>Manufacture of electrical equipment</td>
<td>27</td>
</tr>
<tr>
<td>Manufacture of machinery and equipment (not previously classified)</td>
<td>28</td>
</tr>
<tr>
<td>Manufacture of automotive vehicles and trailers</td>
<td>29</td>
</tr>
<tr>
<td>Civil engineering</td>
<td>42</td>
</tr>
<tr>
<td>Water transport</td>
<td>50</td>
</tr>
<tr>
<td>Transportation by air</td>
<td>51</td>
</tr>
<tr>
<td>Information and communication</td>
<td>58-63</td>
</tr>
<tr>
<td>Insurance</td>
<td>65</td>
</tr>
<tr>
<td>Auxiliary activities of financial services</td>
<td>66</td>
</tr>
<tr>
<td>Legal and accounting activities</td>
<td>69</td>
</tr>
<tr>
<td>Architecture and engineering</td>
<td>71</td>
</tr>
<tr>
<td>Scientific research and development</td>
<td>72</td>
</tr>
<tr>
<td>Advertising and marketing</td>
<td>73</td>
</tr>
<tr>
<td>Security</td>
<td>80</td>
</tr>
<tr>
<td>Public Administration</td>
<td>84</td>
</tr>
<tr>
<td>Education</td>
<td>85</td>
</tr>
<tr>
<td>Human health and social work</td>
<td>86</td>
</tr>
<tr>
<td>Institutional services</td>
<td>87-89</td>
</tr>
<tr>
<td>Activity</td>
<td>ISIC 2-digit code</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Manufacture of pharmaceutical, chemical and medicinal products</td>
<td>21</td>
</tr>
<tr>
<td>Manufacture of computer, electronic and optical products</td>
<td>26</td>
</tr>
<tr>
<td>Consulting services</td>
<td>70</td>
</tr>
<tr>
<td>Professional, scientific and technical activities</td>
<td>74</td>
</tr>
</tbody>
</table>

Source: authors based in OECD ISIC Rev.3 technology intensity definition.

### C.3 MEIC

A last classification is based on the 4 categories established by the Costa Rican Economics, Industry and Trade Ministry. This methodology calculates a $Score_i$ as a function of the average firm employment ($PE$), net annual sales ($VAN$) and the firms total assets value ($ATE$). Firms industry $i$ defines the formula applied to calculate the score. For the services and wholesale and retail firms the next formula applies:

$$Score_{C&S} = 100 \times \left[ \frac{0.6PE}{30} + \frac{0.3VAN}{3,084,000.000} + \frac{0.1ATE}{964,000.000} \right]$$

For the information technology firms the following formula is applied:

$$Score_{ATE} = 100 \times \left[ \frac{0.6PE}{50} + \frac{0.3VAN}{3,084,000.000} + \frac{0.1ATE}{964,000.000} \right]$$

Finally, for the industrial firms the score is estimated as follows:

$$Score_{IND} = 100 \times \left[ \frac{0.6PE}{100} + \frac{0.3VAN}{1,785,000.000} + \frac{0.1ATE}{1,095,000.000} \right]$$

Once the score is estimated, firms are categorized then in the following classes:
Table C3: MEIC size classifications

<table>
<thead>
<tr>
<th>Classification</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro firms</td>
<td>$Score_i \leq 10$</td>
</tr>
<tr>
<td>Small firms</td>
<td>$10 &lt; Score_i \leq 35$</td>
</tr>
<tr>
<td>Mid-sized firms</td>
<td>$35 &lt; Score_i \leq 100$</td>
</tr>
<tr>
<td>Large firms</td>
<td>$Score_i &gt; 100$</td>
</tr>
</tbody>
</table>

Source: authors based on MEIC methodology.

D  Largest changes in firms by ISIC-4 digit classification

Table D1: Firms with most increases and decreases in active firms from 2005 to 2017

<table>
<thead>
<tr>
<th>Industry</th>
<th>ISIC Code</th>
<th>Increase</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger increases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Restaurants and mobile food services</td>
<td>5610</td>
<td>1495</td>
<td>-</td>
</tr>
<tr>
<td>(2) Personal services activities</td>
<td>9609</td>
<td>952</td>
<td>-</td>
</tr>
<tr>
<td>(3) Retail sales of food and beverages</td>
<td>4781</td>
<td>811</td>
<td>-</td>
</tr>
<tr>
<td>(4) Building construction</td>
<td>4100</td>
<td>803</td>
<td>-</td>
</tr>
<tr>
<td>(5) Retail of food and beverages in specialized establishments</td>
<td>4721</td>
<td>792</td>
<td>-</td>
</tr>
<tr>
<td>Larger decreases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Cultivation of plants used to prepare beverages</td>
<td>0127</td>
<td>-</td>
<td>199</td>
</tr>
<tr>
<td>(2) Cultivation of other non-perennial plants</td>
<td>0119</td>
<td>-</td>
<td>156</td>
</tr>
<tr>
<td>(3) Load handling</td>
<td>5224</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>(4) Plant propagation</td>
<td>0130</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>(5) Wood chips and particles production</td>
<td>1610</td>
<td>-</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: authors
## E  Total employment descriptive statistics

**Table E1:** Total employment descriptive statistics, 2005-2017

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Growth</th>
<th>Firm Average</th>
<th>St. Dev.</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>929,972</td>
<td>-</td>
<td>23.4</td>
<td>448.0</td>
<td>68,081</td>
</tr>
<tr>
<td>2006</td>
<td>996,205</td>
<td>7.12</td>
<td>23.8</td>
<td>465.6</td>
<td>74,065</td>
</tr>
<tr>
<td>2007</td>
<td>1,069,388</td>
<td>7.35</td>
<td>23.8</td>
<td>461.3</td>
<td>74,935</td>
</tr>
<tr>
<td>2008</td>
<td>1,143,682</td>
<td>6.95</td>
<td>23.7</td>
<td>449.4</td>
<td>73,300</td>
</tr>
<tr>
<td>2009</td>
<td>1,144,175</td>
<td>0.04</td>
<td>23.3</td>
<td>500.4</td>
<td>85,622</td>
</tr>
<tr>
<td>2010</td>
<td>1,161,067</td>
<td>1.48</td>
<td>22.6</td>
<td>463.3</td>
<td>75,037</td>
</tr>
<tr>
<td>2011</td>
<td>1,190,327</td>
<td>2.52</td>
<td>22.4</td>
<td>472.4</td>
<td>79,291</td>
</tr>
<tr>
<td>2012</td>
<td>1,226,588</td>
<td>3.05</td>
<td>22.5</td>
<td>472.2</td>
<td>80,592</td>
</tr>
<tr>
<td>2013</td>
<td>1,248,317</td>
<td>1.77</td>
<td>22.7</td>
<td>476.5</td>
<td>82,026</td>
</tr>
<tr>
<td>2014</td>
<td>1,278,169</td>
<td>2.39</td>
<td>23.0</td>
<td>515.3</td>
<td>94,302</td>
</tr>
<tr>
<td>2015</td>
<td>1,298,025</td>
<td>1.55</td>
<td>23.1</td>
<td>511.0</td>
<td>94,265</td>
</tr>
<tr>
<td>2016</td>
<td>1,343,689</td>
<td>3.52</td>
<td>23.2</td>
<td>519.9</td>
<td>97,249</td>
</tr>
<tr>
<td>2017</td>
<td>1,367,171</td>
<td>1.75</td>
<td>23.1</td>
<td>520.5</td>
<td>99,868</td>
</tr>
</tbody>
</table>

Source: authors
F  Average employment per industry

Figure F1: Average employment per industry, 2005-2017

Source: authors.
G Composition of job creation and destruction

Figure G2: Composition of job creation

Figure G3: Composition of job destruction

Source: authors.
### Table H1: Labor demand estimations for all firms

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.859***</td>
<td>0.483***</td>
<td>0.585***</td>
<td>0.851***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.008)</td>
<td>(0.091)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.183***</td>
<td>-0.107**</td>
<td>-0.640***</td>
<td>-0.358***</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.044)</td>
<td>(0.249)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.164***</td>
<td>0.131***</td>
<td>0.407**</td>
<td>0.323***</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.023)</td>
<td>(0.192)</td>
<td>(0.121)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.578***</td>
<td>0.503***</td>
<td>0.489**</td>
<td>0.435***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.090)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.512***</td>
<td>-0.201***</td>
<td>-0.114**</td>
<td>-0.367***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.078)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.014***</td>
<td>0.033***</td>
<td>0.057**</td>
<td>0.029***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.031)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.821***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.910</td>
<td>0.839</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.416</td>
<td>0.345</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.638</td>
<td>0.181</td>
</tr>
<tr>
<td>Number of groups</td>
<td>12,846</td>
<td>12,846</td>
<td>6634</td>
<td>12,846</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.

### Table H2: Labor demand estimations for the Agricultural industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.869***</td>
<td>0.555***</td>
<td>0.510***</td>
<td>0.817***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.026)</td>
<td>(0.077)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.004</td>
<td>0.097</td>
<td>0.009</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>(0.184)</td>
<td>(0.153)</td>
<td>(0.271)</td>
<td>(0.290)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>-0.009</td>
<td>-0.000</td>
<td>0.004</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
<td>(0.118)</td>
<td>(0.257)</td>
<td>(0.275)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.463***</td>
<td>0.415***</td>
<td>0.183**</td>
<td>0.130**</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.032)</td>
<td>(0.093)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.387***</td>
<td>-0.158***</td>
<td>0.081*</td>
<td>-0.028</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.024)</td>
<td>(0.048)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.011***</td>
<td>0.046***</td>
<td>0.095</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.010)</td>
<td>(0.067)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.062***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.380)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.916</td>
<td>0.860</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.172</td>
<td>0.488</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.015</td>
<td>0.004</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.506</td>
<td>0.773</td>
</tr>
<tr>
<td>Number of groups</td>
<td>953</td>
<td>953</td>
<td>553</td>
<td>953</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.
Table H3: Labor demand estimations for the Manufacturing industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.860***</td>
<td>0.543***</td>
<td>0.737***</td>
<td>0.871***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.020)</td>
<td>(0.121)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.326***</td>
<td>-0.195**</td>
<td>-0.749***</td>
<td>-0.510***</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.078)</td>
<td>(0.260)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.314***</td>
<td>0.283***</td>
<td>0.601**</td>
<td>0.505***</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.049)</td>
<td>(0.250)</td>
<td>(0.140)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.588***</td>
<td>0.524***</td>
<td>0.401***</td>
<td>0.306***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.023)</td>
<td>(0.103)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.508***</td>
<td>-0.264***</td>
<td>-0.033</td>
<td>-0.228***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.107)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.013***</td>
<td>0.020***</td>
<td>-0.046*</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.027)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.200***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.138)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.952</td>
<td>0.932</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.346</td>
<td>0.063</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.111</td>
<td>0.030</td>
</tr>
<tr>
<td>Number of groups</td>
<td>1765</td>
<td>1765</td>
<td>1097</td>
<td>1765</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis. Source: authors.

Table H4: Labor demand estimations for the Construction industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.667***</td>
<td>0.280***</td>
<td>0.153</td>
<td>0.513***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.027)</td>
<td>(0.174)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.382***</td>
<td>-0.411***</td>
<td>-1.320***</td>
<td>-0.949***</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.101)</td>
<td>(0.477)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.269***</td>
<td>0.088</td>
<td>-0.141</td>
<td>0.557**</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.076)</td>
<td>(0.372)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.591***</td>
<td>0.571***</td>
<td>0.316***</td>
<td>0.513***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.026)</td>
<td>(0.121)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.410***</td>
<td>-0.136***</td>
<td>-0.092</td>
<td>-0.238***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.025)</td>
<td>(0.079)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.010***</td>
<td>0.055***</td>
<td>0.034</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.012)</td>
<td>(0.063)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.042***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.743</td>
<td>0.619</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.165</td>
<td>0.853</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.029</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.715</td>
<td>0.637</td>
</tr>
<tr>
<td>Number of groups</td>
<td>762</td>
<td>762</td>
<td>248</td>
<td>762</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis. Source: authors.
### Table H5: Labor demand estimations for the Wholesale and Retail industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.849***</td>
<td>0.520***</td>
<td>0.616***</td>
<td>0.983***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.013)</td>
<td>(0.127)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.125***</td>
<td>-0.060</td>
<td>-0.381**</td>
<td>-0.287**</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.056)</td>
<td>(0.251)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.092**</td>
<td>0.097***</td>
<td>0.309**</td>
<td>0.299**</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.036)</td>
<td>(0.169)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.514***</td>
<td>0.442***</td>
<td>0.407**</td>
<td>0.404**</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.086)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.448***</td>
<td>-0.212***</td>
<td>-0.184</td>
<td>-0.377***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.138)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.016***</td>
<td>0.031***</td>
<td>0.041**</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.031)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.644***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Adjusted-$R^2$: 0.912 0.854 - -
- Hansen: - - 0.275 0.204
- AR(1): - - 0.001 0.000
- AR(2): - - 0.609 0.744

**Number of groups**: 3511 3511 2052 3511
**Number of instruments**: - - 81 180

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis.
Source: authors.

### Table H6: Labor demand estimations for the Services industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.843***</td>
<td>0.470***</td>
<td>0.485***</td>
<td>0.792***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.014)</td>
<td>(0.085)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.164***</td>
<td>-0.103**</td>
<td>-0.194</td>
<td>-0.081</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.046)</td>
<td>(0.197)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.127***</td>
<td>0.111***</td>
<td>0.133</td>
<td>0.025**</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.028)</td>
<td>(0.100)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.642***</td>
<td>0.535***</td>
<td>0.289**</td>
<td>0.515***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.100)</td>
<td>(0.066)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.545***</td>
<td>-0.247***</td>
<td>-0.087</td>
<td>-0.373***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.012)</td>
<td>(0.087)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.005***</td>
<td>0.033***</td>
<td>0.022</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.033)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.918***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Adjusted-$R^2$: 0.912 0.857 - -
- Hansen: - - 0.071 0.458
- AR(1): - - 0.001 0.000
- AR(2): - - 0.876 0.252

**Number of groups**: 5417 5417 2052 5417
**Number of instruments**: - - 81 180

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis.
Source: authors.
Table H7: Labor demand estimations for the Transportation and Storage industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.857***</td>
<td>0.519***</td>
<td>0.407***</td>
<td>0.855***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.025)</td>
<td>(0.128)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.103</td>
<td>-0.071</td>
<td>0.478</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.094)</td>
<td>(0.250)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.084</td>
<td>0.129*</td>
<td>0.443*</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.074)</td>
<td>(0.211)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.555***</td>
<td>0.441***</td>
<td>0.117</td>
<td>0.228***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.026)</td>
<td>(0.073)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.482**</td>
<td>-0.205***</td>
<td>0.115</td>
<td>-0.140**</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.024)</td>
<td>(0.086)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.015***</td>
<td>0.032***</td>
<td>0.047</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.037)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.965***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.924</td>
<td>0.870</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.167</td>
<td>0.098</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.071</td>
<td>0.001</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.765</td>
<td>0.867</td>
</tr>
<tr>
<td>Number of groups</td>
<td>781</td>
<td>781</td>
<td>547</td>
<td>781</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis. Source: authors.

Table H8: Labor demand estimations for the Accommodation and Food Services industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.685***</td>
<td>0.348***</td>
<td>0.268</td>
<td>0.749***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.053)</td>
<td>(0.184)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>0.070</td>
<td>0.087</td>
<td>-0.404*</td>
<td>-0.134</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.080)</td>
<td>(0.163)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>-0.022</td>
<td>0.020</td>
<td>0.289**</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.064)</td>
<td>(0.144)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.638***</td>
<td>0.573***</td>
<td>0.537***</td>
<td>0.502***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.035)</td>
<td>(0.107)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.422**</td>
<td>-0.175***</td>
<td>-0.064</td>
<td>-0.327**</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.039)</td>
<td>(0.160)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.013***</td>
<td>0.015***</td>
<td>-0.006</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.006)</td>
<td>(0.063)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.161***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.383)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.908</td>
<td>0.859</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.277</td>
<td>0.459</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.071</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.870</td>
<td>0.793</td>
</tr>
<tr>
<td>Number of groups</td>
<td>1124</td>
<td>1124</td>
<td>458</td>
<td>1124</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis. Source: authors.
Table H9: Labor demand estimations for the Information and Communication industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.781***</td>
<td>0.445***</td>
<td>0.301***</td>
<td>0.860***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.032)</td>
<td>(0.148)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.009</td>
<td>0.074</td>
<td>-0.126</td>
<td>-0.047</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.169)</td>
<td>(0.243)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>-0.004</td>
<td>-0.038</td>
<td>-0.034</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.107)</td>
<td>(0.171)</td>
<td>(0.151)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.672***</td>
<td>0.564***</td>
<td>0.326***</td>
<td>0.371***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.041)</td>
<td>(0.094)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.551***</td>
<td>-0.104</td>
<td>-0.106**</td>
<td>-0.277***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.032)</td>
<td>(0.079)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.013**</td>
<td>0.043***</td>
<td>0.033</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.0122)</td>
<td>(0.027)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.728***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.256)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted-$R^2$ 0.891 0.834 - -
Hansen - - 0.508 0.343
AR(1) - - 0.197 0.014
AR(2) - - 0.594 0.527

Number of groups 545 545 199 545
Number of instruments - - 81 180

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.

Table H10: Labor demand estimations for the Professional, Scientific and Technical industry

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.761***</td>
<td>0.435***</td>
<td>0.224**</td>
<td>0.669***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.025)</td>
<td>(0.103)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.276***</td>
<td>-0.196***</td>
<td>-0.664***</td>
<td>-0.326**</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.058)</td>
<td>(0.173)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.471***</td>
<td>0.168***</td>
<td>0.210</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.040)</td>
<td>(0.168)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.614***</td>
<td>0.537***</td>
<td>0.451***</td>
<td>0.474***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.027)</td>
<td>(0.093)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.471***</td>
<td>-0.219***</td>
<td>-0.059</td>
<td>-0.281***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.019)</td>
<td>(0.088)</td>
<td>(0.088)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.013***</td>
<td>0.044***</td>
<td>0.047</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.058)</td>
<td>(0.034)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.690***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted-$R^2$ 0.880 0.824 - -
Hansen - - 0.408 0.242
AR(1) - - 0.072 0.000
AR(2) - - 0.546 0.341

Number of groups 1044 1044 475 1044
Number of instruments - - 81 180

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.
Table H11: Labor demand estimations for the Administrative and Support Services

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.884***</td>
<td>0.460***</td>
<td>0.291***</td>
<td>0.841***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.034)</td>
<td>(0.137)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.300***</td>
<td>-0.231**</td>
<td>-0.578***</td>
<td>-0.308***</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.103)</td>
<td>(0.148)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.252***</td>
<td>0.140**</td>
<td>-0.073</td>
<td>0.264***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.066)</td>
<td>(0.168)</td>
<td>(0.169)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.758***</td>
<td>0.663***</td>
<td>0.574***</td>
<td>0.687***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.032)</td>
<td>(0.148)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.682***</td>
<td>-0.313***</td>
<td>-0.081</td>
<td>-0.540***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.033)</td>
<td>(0.073)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.004</td>
<td>0.048***</td>
<td>0.010</td>
<td>-0.038</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.011)</td>
<td>(0.036)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.381***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Adjusted-$R^2$: 0.931
Hansen: -
AR(1): -
AR(2): -
Number of groups: 1018
Number of instruments: -

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis. Source: authors.

Table H12: Labor demand estimations for firms with low intensity use of technology

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.863***</td>
<td>0.515***</td>
<td>0.478***</td>
<td>0.800***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.014)</td>
<td>(0.125)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.073</td>
<td>-0.005</td>
<td>-0.226</td>
<td>-0.149</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.076)</td>
<td>(0.311)</td>
<td>(0.178)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.058</td>
<td>0.074*</td>
<td>0.074</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.043)</td>
<td>(0.206)</td>
<td>(0.162)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.540***</td>
<td>0.472***</td>
<td>0.462***</td>
<td>0.256***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.015)</td>
<td>(0.109)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.476***</td>
<td>-0.220***</td>
<td>-0.025</td>
<td>-0.179***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.012)</td>
<td>(0.109)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.018***</td>
<td>0.028***</td>
<td>0.015</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.036)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.935***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Adjusted-$R^2$: 0.922
Hansen: -
AR(1): -
AR(2): -
Number of groups: 5875
Number of instruments: 81

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis. Source: authors.
Table H13: Labor demand estimations for firms with medium-low intensity in the use of technology

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.846***</td>
<td>0.456***</td>
<td>0.546***</td>
<td>0.788***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.014)</td>
<td>(0.117)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.282***</td>
<td>-0.205***</td>
<td>-0.972***</td>
<td>-0.604***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.049)</td>
<td>(0.366)</td>
<td>(0.177)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.236***</td>
<td>0.185***</td>
<td>0.657**</td>
<td>0.504***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.040)</td>
<td>(0.259)</td>
<td>(0.172)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.563***</td>
<td>0.493***</td>
<td>0.477***</td>
<td>0.496***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.124)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.492***</td>
<td>-0.206***</td>
<td>-0.182**</td>
<td>-0.383***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.092)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.014***</td>
<td>0.042***</td>
<td>0.049</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.038)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.446***</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

| Adjusted-$R^2$ | 0.887 | 0.787 | - | - |
| Hansen     | - | - | 0.163 | 0.349 |
| AR(1)      | - | - | 0.000 | 0.000 |
| AR(2)      | - | - | 0.202 | 0.221 |
| Number of groups | 3648 | 3648 | 1930 | 3648 |
| Number of instruments | - | - | 81 | 180 |

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.

Table H14: Labor demand estimations for firms with medium-high intensity use of technology

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.830***</td>
<td>0.451***</td>
<td>0.230*</td>
<td>0.652***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.017)</td>
<td>(0.135)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.232***</td>
<td>-0.141**</td>
<td>-0.553*</td>
<td>-0.368***</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.063)</td>
<td>(0.247)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.176***</td>
<td>0.125***</td>
<td>0.026</td>
<td>0.214*</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.035)</td>
<td>(0.026)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.643***</td>
<td>0.555***</td>
<td>0.474***</td>
<td>0.507***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.017)</td>
<td>(0.110)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.544***</td>
<td>-0.249***</td>
<td>-0.064</td>
<td>-0.272***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.083)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.009***</td>
<td>0.028***</td>
<td>0.027</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.033)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.712***</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

| Adjusted-$R^2$ | 0.910 | 0.855 | - | - |
| Hansen     | - | - | 0.040 | 0.299 |
| AR(1)      | - | - | 0.035 | 0.000 |
| AR(2)      | - | - | 0.364 | 0.126 |
| Number of groups | 2792 | 2792 | 1295 | 2792 |
| Number of instruments | - | - | 81 | 180 |

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.
### Table H15: Labor demand estimations for firms with high intensity use of technology

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.863***</td>
<td>0.493***</td>
<td>0.311**</td>
<td>0.840***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.030)</td>
<td>(0.127)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.370***</td>
<td>-0.374***</td>
<td>-0.484*</td>
<td>-0.537***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.086)</td>
<td>(0.276)</td>
<td>(0.229)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.324***</td>
<td>0.216***</td>
<td>0.305</td>
<td>0.434***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.071)</td>
<td>(0.309)</td>
<td>(0.226)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.700***</td>
<td>0.629***</td>
<td>0.526**</td>
<td>0.766***</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.042)</td>
<td>(0.111)</td>
<td>(0.133)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.609***</td>
<td>-0.296***</td>
<td>-0.013</td>
<td>-0.630***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.030)</td>
<td>(0.132)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.001</td>
<td>0.046***</td>
<td>0.053**</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.071)</td>
<td>(0.053)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.572***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Notes:** * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis.

**Source:** authors.

### Table H16: Labor demand estimations for micro firms at birth

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.655***</td>
<td>0.356***</td>
<td>0.365**</td>
<td>0.726***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.013)</td>
<td>(0.109)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.279***</td>
<td>-0.088***</td>
<td>-0.214</td>
<td>-0.185</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.026)</td>
<td>(0.229)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.215***</td>
<td>0.110***</td>
<td>0.233</td>
<td>0.221*</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.018)</td>
<td>(0.149)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.538***</td>
<td>0.498***</td>
<td>0.313**</td>
<td>0.361***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.018)</td>
<td>(0.073)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.417***</td>
<td>-0.165***</td>
<td>-0.013</td>
<td>-0.251***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.057)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.012***</td>
<td>0.028***</td>
<td>-0.003</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.040)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.716***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Notes:** * significant at the 10% level, ** significant at the 5% level and *** significant at the 1% level. Standard errors in parenthesis.

**Source:** authors.
Table H17: Labor demand estimations for small-sized firms at birth

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.819***</td>
<td>0.482***</td>
<td>0.637***</td>
<td>0.806***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.011)</td>
<td>(0.113)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.058**</td>
<td>0.008</td>
<td>-0.382</td>
<td>-0.169</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.034)</td>
<td>(0.316)</td>
<td>(0.128)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.038</td>
<td>0.041</td>
<td>0.234</td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.025)</td>
<td>(0.154)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.510***</td>
<td>0.447***</td>
<td>0.425***</td>
<td>0.384***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.012)</td>
<td>(0.094)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.446***</td>
<td>-0.199***</td>
<td>-0.193*</td>
<td>-0.307***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.115)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.012***</td>
<td>0.025***</td>
<td>0.029</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.037)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.667***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.788</td>
<td>0.653</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.365</td>
<td>0.519</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.722</td>
<td>0.659</td>
</tr>
<tr>
<td>Number of groups</td>
<td>5473</td>
<td>5473</td>
<td>2608</td>
<td>5473</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.

Table H18: Labor demand estimations for medium-sized firms at birth

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.873***</td>
<td>0.528***</td>
<td>0.489***</td>
<td>0.897***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.018)</td>
<td>(0.133)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.194***</td>
<td>-0.130</td>
<td>-0.221</td>
<td>-0.195***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.079)</td>
<td>(0.309)</td>
<td>(0.156)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.196***</td>
<td>0.174***</td>
<td>-0.041***</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.048)</td>
<td>(0.164)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.566***</td>
<td>0.494***</td>
<td>0.494***</td>
<td>0.399***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.016)</td>
<td>(0.113)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.522***</td>
<td>-0.253***</td>
<td>-0.282***</td>
<td>-0.358***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.016)</td>
<td>(0.089)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.014***</td>
<td>0.037***</td>
<td>0.043</td>
<td>0.037**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.031)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.784***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adjusted-$R^2$</td>
<td>0.811</td>
<td>0.677</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hansen</td>
<td>-</td>
<td>-</td>
<td>0.055</td>
<td>0.098</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-</td>
<td>-</td>
<td>0.250</td>
<td>0.625</td>
</tr>
<tr>
<td>Number of groups</td>
<td>3148</td>
<td>3148</td>
<td>1752</td>
<td>3148</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.
Table H19: Labor demand estimations for large firms at birth

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.930***</td>
<td>0.588***</td>
<td>0.515***</td>
<td>0.924***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.029)</td>
<td>(0.126)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.308</td>
<td>-0.228</td>
<td>-0.429</td>
<td>-0.569**</td>
</tr>
<tr>
<td></td>
<td>(0.204)</td>
<td>(0.213)</td>
<td>(0.460)</td>
<td>(0.315)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.292</td>
<td>0.212</td>
<td>0.601**</td>
<td>0.376***</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.142)</td>
<td>(0.300)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.655***</td>
<td>0.587***</td>
<td>0.455***</td>
<td>0.462***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.024)</td>
<td>(0.123)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.614***</td>
<td>-0.328***</td>
<td>0.011</td>
<td>-0.443***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.025)</td>
<td>(0.125)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.009***</td>
<td>0.047***</td>
<td>0.065**</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.006)</td>
<td>(0.027)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.526***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Adjusted-$R^2$ | 0.925 | 0.846 |   |   |
| Hansen         | -     | -     | 0.179 | 0.518 |
| AR(1)          | -     | -     | 0.022 | 0.021 |
| AR(2)          | -     | -     | 0.643 | 0.441 |
| Number of groups | 2066  | 2066  | 1461  | 2066  |
| Number of instruments | - | - | 81 | 180 |

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.

Table H20: Labor demand estimations for free trade zone regime

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Fixed effects</th>
<th>MGM-Dif</th>
<th>MGM-Sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{i,t-1}$</td>
<td>0.906***</td>
<td>0.406***</td>
<td>0.139</td>
<td>0.905***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.035)</td>
<td>(0.168)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>$w_{i,t}$</td>
<td>-0.721***</td>
<td>-0.639**</td>
<td>-1.075***</td>
<td>-1.004***</td>
</tr>
<tr>
<td></td>
<td>(0.209)</td>
<td>(0.306)</td>
<td>(0.401)</td>
<td>(0.316)</td>
</tr>
<tr>
<td>$w_{i,t-1}$</td>
<td>0.737***</td>
<td>0.361**</td>
<td>0.106</td>
<td>0.966***</td>
</tr>
<tr>
<td></td>
<td>(0.194)</td>
<td>(0.166)</td>
<td>(0.349)</td>
<td>(0.336)</td>
</tr>
<tr>
<td>$Y_{i,t}$</td>
<td>0.685***</td>
<td>0.544***</td>
<td>0.512***</td>
<td>0.332***</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.042)</td>
<td>(0.149)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>$Y_{i,t-1}$</td>
<td>-0.641***</td>
<td>-0.243***</td>
<td>0.086</td>
<td>-0.306***</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.038)</td>
<td>(0.121)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>$K_{i,t}$</td>
<td>0.010*</td>
<td>0.087***</td>
<td>0.198***</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.028)</td>
<td>(0.076)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.948***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.312)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Adjusted-$R^2$ | 0.948 | 0.885 |   |   |
| Hansen         | -     | -     | 0.128 | 0.267 |
| AR(1)          | -     | -     | 0.249 | 0.029 |
| AR(2)          | -     | -     | 0.316 | 0.393 |
| Number of groups | 303  | 303  | 153  | 303  |
| Number of instruments | - | - | 81 | 180 |

Notes: * significant at the 10% level, ** significant at the 5% level and *** significant at the 1 level. Standard errors in parenthesis.
Source: authors.
## 1 Alternate estimations

**Table I1: Alternate results**

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated Coefficient</th>
<th>GMM Estimator</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>All firms</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\eta_{i,t-1}$</td>
<td>$\epsilon_0$</td>
<td>$\sigma_0$</td>
</tr>
<tr>
<td><strong>Industry categories</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.838***</td>
<td>0.160***</td>
<td>0.040</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.721***</td>
<td>0.239***</td>
<td>-0.040</td>
</tr>
<tr>
<td>Construction</td>
<td>0.378***</td>
<td>0.523***</td>
<td>-0.479***</td>
</tr>
<tr>
<td>Wholesale and Retail</td>
<td>0.542***</td>
<td>0.335***</td>
<td>0.075</td>
</tr>
<tr>
<td>Transportation and Storage</td>
<td>0.866***</td>
<td>0.342***</td>
<td>-0.329***</td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>0.770***</td>
<td>0.345***</td>
<td>0.020</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>0.757***</td>
<td>0.467***</td>
<td>-0.079</td>
</tr>
<tr>
<td>Professional, Scientific and Technical act.</td>
<td>0.586***</td>
<td>0.473***</td>
<td>-0.030</td>
</tr>
<tr>
<td>Administrative and Support Services</td>
<td>0.880***</td>
<td>0.489***</td>
<td>-0.303***</td>
</tr>
<tr>
<td><strong>Technology intensiveness categories</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.700***</td>
<td>0.314***</td>
<td>-0.108</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>0.672***</td>
<td>0.413***</td>
<td>-0.548***</td>
</tr>
<tr>
<td>Medium-High</td>
<td>0.642***</td>
<td>0.428***</td>
<td>-0.263***</td>
</tr>
<tr>
<td>High</td>
<td>0.813***</td>
<td>0.706***</td>
<td>-0.434***</td>
</tr>
<tr>
<td><strong>Firm size at birth categories</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro firms</td>
<td>0.510***</td>
<td>0.209***</td>
<td>-0.093</td>
</tr>
<tr>
<td>Small firms</td>
<td>0.652***</td>
<td>0.346***</td>
<td>0.012</td>
</tr>
<tr>
<td>Medium firms</td>
<td>0.527***</td>
<td>0.328***</td>
<td>-0.218***</td>
</tr>
<tr>
<td>Large firms</td>
<td>0.958***</td>
<td>0.418***</td>
<td>-0.380***</td>
</tr>
<tr>
<td><strong>Free trade zones</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free zones</td>
<td>0.905***</td>
<td>0.332***</td>
<td>-0.840***</td>
</tr>
</tbody>
</table>

Source: authors.

Note: the sample included firms with a median employment grater than 5.
Okun's Law

Several studies have tested the empirical observation of Okun (1963), who established a short run inverse relationship between unemployment and production. Guerrero (2007) test this relationship for the Central American region with country-level data for the eighties, nineties and early two thousands. Congruent with the classical aggregated supply and demand model, he found that for the Costa Rican economy, a one percent increase in production decreases unemployment in a 0.25%. In this fashion he estimates coefficients of $-0.020$ for El Salvador, $-0.714$ for Guatemala, $-0.384$ for Nicaragua, $-0.171$ for Panamá and $0.048$ for Honduras. This estimations usually have a low goodness of fit but generally give a good insight of the relationship between this macro variables.

In order to update this empirical approximations for Costa Rica, two specifications proposed by Okun (1963) are used. The first lineal equation expresses unemployment natural rate as a function of the real production growth rate, while the latter establishes the same unemployment rate $u_t$ as a function of the difference of real production growth $dy_t$ and trend product growth rates $dy_{t,t}$, i.e.:

\begin{align}
  u_t &= \alpha_0 + \alpha_1 dy_t + e_t \quad (10.6.1) \\
  u_t &= \beta_0 + \beta_1 (dy_t - d_{y,t}) + e_t \quad (10.6.2)
\end{align}

For this exercises, the BCCR quarterly series of of real product were used. Through the Hodrick-Prescott filter (with $\lambda=1800$) the trend GDP was estimated. Finally the International Labor Organization (ILO) was the source for the Costa Rican unemployment rate.

Results for both regressions are shown in table J1. Both estimators are close to the ones reckoned by Guerrero (2007) and share some properties, like a low goodness of fit and negative estimated coefficients.

Results imply that, under the first approach, a one percent increase in GDP has an impact of $-0.257\%$ over the unemployment rate. Under the second approach, a $1\%$ deviation of the production growth from its trend decreases a $0.140\%$ the unemployment rate. However, this estimations lack of statistical significance.
Table J1: Okun’s law estimations

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimation</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_0$</td>
<td>9.112</td>
<td>1.176</td>
</tr>
<tr>
<td>$\alpha_1$</td>
<td>-0.257</td>
<td>0.242</td>
</tr>
<tr>
<td>$\beta_0$</td>
<td>8.069</td>
<td>0.592</td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>-0.140</td>
<td>0.268</td>
</tr>
<tr>
<td>$R^2$</td>
<td>= 0.101</td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0.026$

Source: authors.

K  Revec and Continuous Employment Survey comparison

Figure K4: Yearly Employment (2010-2017)

Notes: The Continuous Employment Survey (ECE since its acronym in Spanish) is a quarterly inquiry. Graphs compare ECE data from the third quarter of each year to the yearly Revec data.

Source: authors.